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Abstract: Computationally efficient identification of dynamic errors-in-variables
model is considered in this paper. The instrumental variable (IV) method is compu-
tationally efficient but it suffers from poor small-sample properties of the estimated
parameters. The method presented in this work uses the prefiltered data. The input-
output data is passed through a pair of user defined prefilters and the output data
from the prefilters is subjected to a least-squares like algorithm. Compared to the IV
approach, the proposed method shows a significant improvement in the small-sample
properties of the MA parameter estimates, without any increase in the computational

load. ©QIFAC 2002
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1. INTRODUCTION

Consider a linear system with noise-free input
ug(t) linked to its true output yo(t) by the dif-
ference equation

Alg™ ) wo(t) = B(g™ ) uo(t), (1)

where A(q~!) and B(q™!) are co-prime polynomi-
als of known degree n and type

Al =1+a1qg '+ +ang™" @)
Bl =big '+ +bug ™ )

Note that ¢~ ! is the backward shift operator, i.e.
g~ ! z(t) = z(t — 1). The available input data u(t)
and output data y(t) are noise corrupted, i.e.

1 This work was supported by Swedish Research Council
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ult) = uo(t) + i(t)
y() = yo(t) + 3(2) ° ®)

where i(t) and §(¢) are mutually independent zero
mean white noise sequences, each independent
of uo(t) and yo(t), with variances A, and Ay,
respectively. The problem under consideration is
to identify the vector of system parameters
T
0:[a1...anb1...bn] (4)
from the available measurements {u(t)}{¥.; and
{y(@®}Y,, assuming A, and ), are unknown.

The problem introduced here is often referred as
a dynamic “errors—in—variables” problem and is
found in many disciplines of science, as proved
by the several applications collected in (van Huf-
fel, 1997). Several authors have considered this
problem with different approaches. For example,
we can distinguish between time-domain (Ljung,
1999) and frequency-domain methods (Pintelon



and Schoukens, 2001), approaches exploiting de-
terministic signals (e.g. periodic inputs (Forsell
et al., 1999)) or stochastic processes, methods
that make use of second-order statistics only or
methods based on higher order cumulant statis-
tics (Tugnait, 1992). When only second-order
statistics are exploited it is a well-known result
that, in general, the identification of errors-in-
variables models cannot admit a single solution
(Anderson and Deistler, 1984). An overall view of
different approaches is presented in (Séderstrém
et al., 2001).

One of the computationally efficient solutions of
the errors-in-variables problem is instrumental
variable method and related subspace fitting ap-
proaches (Stoica et al., 1995), (Séderstrom and
Mahata, 2001). The accuracy of the parameter
estimates obtained by IV based methods is often
poor, particularly when the system poles are close
to the unit circle or the input signal spectrum is
peaky. This poor accuracy of IV based methods
can mainly be attributed to the fact that they use
the estimates of correlation of the data at ’high’
lags. In this paper, we propose an approach where
the data is prefiltered by two user defined filters.
The design of the prefilters enables us to use a
least-squares like method, where correlation esti-
mates at lower lags are used. We also demonstrate
that significant improvement in the estimate accu-
racy is achieved for the same computational cost.

2. IDENTIFICATION METHODS
2.1 The instrumental variable estimator

Any scalar or vector quantity z(t), which is a func-
tion of the data {u(t)},, {y(¥)}{L, is composed
of two parts, i.e.

z(t) = zo(t) + Z(1),

where we denote the contribution of noise free
part of the data, i.e. {uo(t)}}L, and {yo(¢)}}\, by
2o (t), while (%) is used to denote the contribution
of the measurement noise sequences {i(t) };~., and
{#®)}Y,. For example, consider the regressor
vector

YO)=[~yt-1) ... —y(t—n)
ut—1) ... ut—n)]"
=vo(t) + B(0), )
where
Pot)=[—wo(t —1) ... —yo(t — )
uo(t = 1) ... uo(t —n)]7(6)
P)=[~g(t—1) ... =5t —n)
at—1) ... at-n)]" (7)

Let us introduce the extended regressor vector

o) =[—y(t) »T®)]" . 8)

It follows from (1), (2) and (6) that

g (£)0 = yo(t), 9
and
v(t) =y(t) - ¥ ()0
= A(¢")g(t) - Blg™Ha(?)
=Clg™")e(t), (10)

where e(t), the innovation of v(t), is a zero mean
white noise with variance A. The polynomial
C(q™!) and X can be found by the spectral fac-
torization

AC()C(g™") = M AlQA(g™)
+AuB(g)B(g™")(11)

From (9) we see that, for any data-dependent vec-
tor z(t) of dimension p > 2n, which is correlated
with 14(t), we have

Ez(t)y; (t)0 = Ez(t)yo(t). (12)

Now, if it is possible to construct z(t) in such a
way that

R, = Fa(t)d’ (1) =0, (13)

we can construct an instrumental variable esti-
mate @;, of 0 as

éiv = AL/,Rzy- (14)

Note that, we use X to denote an estimate of X.
We stress that 6;, exists if Rzy, = Ez(t)g (t)
is full rank. This is the persistence of excitation
like condition on the noise-free input ug(t). This
assumption is not restrictive in the sense that
most of the inputs satisfy this condition. We refer
the reader to the discussion on generic consistency
in (Séderstrom and Stoica, 1989), (Soderstrom
and Stoica, 1983) and (Stoica et al., 1995) for

details . We have following result for éi,,.
Lemma 1. If the measurement noise sequences
are gaussian, 0, is asymptotically Gaussian dis-
tributed as
VN8, — 0) "2 N (0, P),  (15)
Py, = /\Rld,cov [C(q"l)z(t)] Rlz, (16)

where X1 denotes the pseudo-inverse of X.

Proof. See (Soderstrém and Mahata, 2001). =



2.2 Estimation using prefiltered data

The often encountered poor accuracy of the in-
strumental variable estimator is a direct conse-
quence of (13). The elements of z(t) must be
sufficiently delayed with respect to the elements of
¥ (t) in order to satisfy (13). For instance, we can
use z(t) = ¢ (t — ) for r > n. Since it is difficult
to accurately estimate the correlation of the data
at higher lags, often poor estimates of R,y and
R,, may result, which leads to poor accuracy of
the estimates. In this section, an attempt will be
made to remedy this problem by passing the data
through a pair of user defined filters.

Let us assume that the input-output data are
passed through a pair of FIR filters G1(¢™!) and
G2(q™1), each of order m > n. Let us denote for
i=1,2

ui(t) = Gi(g™"u(t), (17)
yi(t) = Gi(g Ny(t), (18)
vi(t) = Gi(g~ " u(2), (19)
¥;(t) = Gi(g™ (), (20)
@:(t) = Gi(g ") o(2). (21)

It is straightforward to see from (9) that for
i=1,2

Yo ()0 = yio(2)- (22)

Thus, if it is possible to design Gi(¢~!) and

G2(q™ 1) such that

R, ; =0, (23)

we can obtain two estimators of 8 as

01 ¢ P, R¢1y2’ (24)
=R}, , R, (25)

provided Ry, 4,, and Rg, 4,,, Tespectively, are
full rank. We have the following result concerning
the design of Gi(¢~!) and Gs(g~!) in order to
satisfy (23).

Lemma 2. Let us define the polynomial H(q) as

H(q) = ¢"Gi(q )Ga(q) = Z hig'.  (26)
i=0
Then (23) is satisfied if
h;=0, m-n<i<m-+n. 27
Proof. See appendix A. [

Thus, we can start with H(q), the polynomial of
order 2m satisfying (27) and factor it accordingly

to obtain Gi(g~!) and Ga(g~!). We have the
following asymptotic result for the accuracy of the
estimates 6; and 8,.

Lemma 3. Define the polynomials

Clg™)G1(a)G2(a ) =Glg™), (28)
2m+2n

AgME (¢ = S BV (29)
=0
2m+-2n

Al@™MBHH )= Y B, (30)
21;;;-0211

B¢ HHY g )= Y B¢ (31)

=0

If the measurement noise sequences are Gaus-
sian, 8;, 1 = 1,2 are asymptotically Gaussian
distributed as

VN(0; - 6) "2° N (0, P), (32)
P;=Rl , QRL, i#je{,2} (33

where

Q = Xcov [G(g7Ho(t)] + Qe (34)

and Q. is given by (B.19)-(B.23) in appendix.
Proof. See appendix B. [ ]

3. NUMERICAL ILLUSTRATION

To illustrate numerically the identification meth-
ods introduced in the previous section, we shall
consider the second order system with

AlgH)=1-15¢"1+0.7¢72, (35)
B(g7')=1.0¢7" +0.5¢72. (36)

The true input uo(t) is an ARMA process given
by

1+2¢7' 4472
1-1.8¢7!+0.9¢72

ug(t) = €(t), (37)

where €(t) is a zero mean white noise sequence
with variance 0.25. The variance of both the
measurement noise sequences u(t) and F(t) is
4. As an illustrative example, we consider the
polynomial H{q™!) as

H(g)=1-¢" (38)

Note that, the value of m is set to 3 and (27)
is satisfied with this choice of H(g™!). Among
several possibilities of factorising H(g™!) into a



[ Estimate | [ a1 [ a2 [ &1 [ b2 |
Mean —1.50 0.70 1.00 0.49
8 SD(n) | 0.037 | 0.020 | 0.165 | 0.208

S.D(t) | 0.031 | 0.024 | 0.120 | 0.156
Mean —1.50 0.70 1.00 0.49
8, S.D(n) 0.036 0.028 | 0.127 | 0.162
S.D(t) 0.031 0.022 { 0.120 | 0.156
8;, Mean —1.50 0.70 0.88 0.64
(p="86) S.D(n) 0.022 0.029 | 0.792 | 0.944
S.D(t) | 0.015 | 0.022 | 0.556 | 0.661
;. Mean —1.50 0.70 0.99 0.51
(p=10) [ S.D{n) | 0.014 | 0.013 | 0.239 | 0.274
S.D(1) 0.013 0.013 | 0.215 | 0.246
Table 1. Simulation results form 500

Monte-Carlo simulations.

Estimate 61 62 6;y 6y

(p=6) | (p=10)

30579 | 30579 31741 49173

Table 2. Computational load involved in

different algorithms, in terms of Matlab
flops.

pair of polynomials of order 3, see (26), we have
arbitrarily taken G1(g7!) and G2(g7!) as

Gi(gH)=1+2¢14+2¢"2+¢7%, (39)
Ga(g7)=1-2¢""+2¢7*~¢7%.  (40)

As candidate algorithms, along with the proposed
algorithm using prefiltered data, we consider the
IV algorithms with the instrument vector given
by
T
z(t) = [u(t—3) ... u(t—p—2)] (41)

for different values of p, the dimension of the
instrument vector. We have summarised the sim-
ulation results in Table 1. The results are based
on 500 independent Monte-Carlo simulations. The
number of data points N in each simulation was
300. For each method we have given the sample
mean and sample standard deviation denoted by
SD(n). The standard deviations of the parame-
ters obtained from the Monte-Carlo simulations
are compared with the corresponding asymptotic
standard deviation denoted by SD(t) calculated
using Lemma 1 and Lemma 3.

In Table 2, we have compared the number of
Matlab floating point operations involved in each
of the algorithms.

4. DISCUSSION

From Table 1, we see that the IV estimates of
the A parameters are reasonably accurate, but the
corresponding accuracy of the B parameters are
very poor for p = 6. Increasing the instrument
dimension from 6 to 10, an improvement in the
B parameter estimation can be noticed. On the

other hand, using the approach using the pre-
filtered data, the improvement in the B parameter
estimation is significant. One demerit of the pro-
posed algorithm is the slight loss of accuracy in A
parameter estimation. If we compare the compu-
tation involved in the algorithms in Table 2, we see
that increasing the dimension of the instrument
from 6 to 10, the computational load is increased
significantly, while the proposed algorithm is of
less computational complexity.

It is also interesting to note that, although the
estimates 91 and 92 have been designed in such a
way that they have the same asymptotic proper-
ties, their small sample properties differ. As can
be seen from Table 1, 8, performs better than 6.
This can be attributed to the fact that 6, uses
1;1(t) as the regressor vector and ¢,(t) as the
instrument vector. Since in the example consid-
ered here, the system to be identified is low pass
and G1(g™!) is also a low pass filter, the system
properties are excited better using () as the
regressor vector.

5. CONCLUSIONS

In this work, we have presented a computation-
ally economic algorithm to identify the dynamic
errors-in-variables model. The algorithm shows
significant improvement in the accuracy of the
system parameter estimates over the instrumental
variable method. The method can also be used,
when the measurement noise sequences satisfy
more generalised constraints. The same algorithm
can handle the case when @(t) and §(t) are corre-
lated with each other. In case the sequences (t)
and §(t) are moving average processes of finite
order, we can increase the parameter m to account
for that. The polynomial H(q™!) is to be designed
by the user. In the example in the last section
H(q™!) was selected in an ad-hoc manner. But
it is possible to make it data dependent, i.e. one
can think of an iterative procedure of adjusting
the coefficients of the polynomial H(q™!), based
on the last estimates of the system parameters,
to arrive at statistically more accurate estimates.
For example, the expression (3.3) can be used to
optimise the covariance matrix of the estimates in
some sense to derive such a scheme.
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Appendix A. PROOF OF LEMMA 2

We need the following proposition.

Proposition: Consider the stationary vector pro-
cesses v(t), wi(t) and wy(t) such that

wi(t) =Gi(q)v(t), i=1,2; (A1)
ry (1) = Ev(t)vT (¢t — 1), (A.2)
1‘12(’1') = EW] (t)Wg(t it T), (A3)

where G1(gq~!) and Gy(¢~!) are FIR filters of
orders | and k, respectively. Let us assume

I+k
0G0 (9)G2(a7) =G(g) =D _gig™" (A4)
=0
I+k
Then ri2(7) = Z gity (I — 7 —14). (A.5)
=0

Proof: Straightforward and omitted.

As a special case of (A.1), if

v(t) = [5(t) a)]”, (A.6)
wi(t) = [:(t) w(®)]",i=1,2 (A7)
then we get from (A.5) and (26)
= {38720
[ Ahpr, i |7 <m

Note that, in this specific case, A is a diagonal
matrix, but it need not be diagonal for (A.9)
to hold. Since Ry 4 in (23) is composed of the
elements of {r,(7)}?__,, it is sufficient to have
(27) satisfied in order (23) to hold.

Appendix B. PROOF OF LEMMA 3

In this appendix, we shall assume R, ., is esti-
mated as

Roar = Zm(t)z?(t) (B.1)

Form (24), we get after some steps
] o1& T
0= 0=y, 5 2 ) [5:6) - %, (98]

4’1""2 N Z ¢1 (t)’l}g(t) (BQ)

Hence it follows from ergodicity results, see
(S6derstrém and Stoica, 1989), that 8; is asymp-
totically Gaussian distributed as,

VN@, -6) "= N0, ), (B.3)
where P =Rl , QRY (B.4
and

1 N N
Q=lim E {—]\722%('5)02 OOEHE } - (B.5)

t=1s=1
It remains to compute @. In this aim, we decom-

pose ¢, (t) in (B.5) into its noisy and noise-free
parts and retain only the non-zero terms to get

Q:Qa+Qba

where N N
Q. =1\}i_x'n°°E {% ZZ¢10 (tva(t)ve (3)¢¥:)(3 }
i=1s=1

= oo (Gl )e0)]

Qp=lim E{ ZZ@ t)yoa (t)us (s)@(s}(B 8)

t=1s=1

(B.6)

(B.7)



Note that, in (B.7) we have used (28). For the
detailed derivation of (B.7), we refer the reader
o (Séderstrom and Stoica, 1983). To simplify
Qb, let us apply the property of jointly Gaussian
distributed random vectors to get

Qb = Qc + Qd + Qe, (B.Q)
where NN
. 1 ~
0= Jim %33 2 {b0m00)
t=1 s=1
E{u(s)é1 (s)}
=0, (B.10)

Qa=Jim =3 » {0081 5)}
t=1 s=1
E {va(t)va(s)}
= Acov [G(q-l)a>(t)] , (B.11)
E{(t)oa(s)}
E {0:()) (5) }(B.12)

Note that, (B.10) follows from (23) and in (B.11)
we have used (28). The derivation of (B.11)
is similar to that of (B.7) and can be found
in (S6derstrom and Mahata, 2001). Combining
(B.6)-(B.12) we get

Q=Q.+Qy, (B.13)
where

Qs = Acov [G(q_l)d)(t)] . (B.14)

To examine Q. closely, let us first define the
polynomials

F(g™')=A(¢H)Ga(¢™"), (B.13)
L(g7")=B(¢"")G:(¢™"), (B.16)
2m+n
Z Tig~i=A(¢Y)H(¢™Y), (B.17)
amin
Z Aig~*=B(g )H(¢™"). (B.18)

Note also that, (2)1 (t) is composed of the delayed
and filtered measurement noise sequences #;(t)

and @ (t). In the aim of evaluating E {J)l (t)vg(s)} ,

let us examine

Ej (vt — 1)
=E{Gi(aF®)} {Fa™ )t —7)}

=T (B.19)

Note that, in the last equality we have used the
proposition in the appendix A, (B.17) and (26).
Similarly by (A.5), (B.18) and (26) we have

Eﬁ] (t)’U2 (t - T) = /\uAm—1'~ (B20)
Note that Q. is a (2n+1) x (2rn+1) matrix, which

can be splitted into block matrices

(11) H2)
Qe= [Q(m) Q(zz)J ) (B.21)
where Q1) is a (n 4+ 1) x (n + 1) matrix and
Q2 is a n x n matrix. Consider Qf,l,,l )| which is
the element at pth row and vth column of Q(11),
From (B.19)for 1<p<n+landl1<v<n+1
we get

Q(ll)-‘]\}l_l)n _ZZE{y t— p+ Dua(s)}
o N t=1 s=1
E{j(s — v+ v (t)}
2 N N

= lim —ZZI‘ ) VS
N-—»oo N L £s m—t+s+pu— m—s+i+v—1

2m+4n
2
=)\y Z I‘iF2m+/4+v—2—i
=0

2 glea)
=22p

2m+p+v—21 (B'22)

where we used the convention I'; = 0 for < < 0
and 7 > 2m + n. Note that in the last equality,
we have used (29). Similarly, for the other blocks
of Q. we can show using (B.19), (B.20), (30) and
(31) that

b
levz) =AyAu é:nzi-u+v—1’
1<pu<n+1, 1<v<n; (B.23)
o = a2,
1<v<n+1,
bb
Q(22) Azﬁgmlu+w
1<p<n, 1<v<n

1< u<n; (B.24)

(B.25)

Thus, (B.14), (B.21)-(B.25) together define the
matrix Q. This completes the derivation of the
asymptotic covariance matrix of 0,. The asymp-
totic covariance matrix of @, can be obtained
from the expression of P, by interchanging the
subscripts 1 and 2.



