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Abstract: Balanced model truncation has been considered by many authors, since it is a simple
and, nevertheless, efficient model reduction technique. In many cases the approximation error
may be bounded by a function of the neglected singular values. In this paper the performance
of balanced truncation of state space models for ARMA processes is analysed, where the
goodness of fit is measured by the asymptotic Gaussian likelihood function. It is shown that
locally, i.e. close to the set of lower order systems, minimum phase balanced truncation and
stochastically balanced truncation give almost optimal results.
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1. INTRODUCTION

Model reduction is concerned with the problem of
finding a ‘simple’ model, which is a good approxima-
tion of a ‘complex’ model. In this paper state space
models for discrete time, weakly stationary processes
with a rational spectral density, i.e. ARMA processes,
are considered. In this setup the asymptotic Gaussian
likelihood is a convenient measure of the goodness of
fit of the approximate model.

In general, the problem of finding the bestk-th order
state space model for a process, which is generated by
an n-th order system (n � k), is a difficult optimisa-
tion problem, which only can be solved by numerical
optimisation techniques.

On the other hand, balanced model truncation is a
simple approach, which gives good results, especially
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14438INF and by the program ‘Training and Mobility of Re-
searchers - Research Networks’ through project System Identifica-
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if the truen-th order model is ‘close’ to the set of all
k-th order models.

In this paper, the behaviour of truncation methods,
in the case that a sequence ofn-th order models
converges to ak-th order model will be investigated. It
will be shown that, given certain regularity conditions,
minimum phase balanced truncation gives the fastest
rate of convergence of the truncated model to the
best approximation. In this sense, minimum phase
balanced truncation is ‘locally optimal’.

Note that stochastically balanced realisations are re-
lated via diagonal state space transformations to mini-
mum phase balanced realisations. Therefore, stochas-
tically balanced truncation shares this optimality prop-
erty.

The outline of the paper is as follows: The next sec-
tion 2 defines the problem setting and gives the main
results. Section 3 illustrates the results obtained with
a simple simulation example. Finally section 4 gives
some conclusions and remarks. Most of the proofs are
deferred to section 5.
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2. MODEL REDUCTIONAND BALANCED
MODEL TRUNCATION

Considera p-dimensional,discretetime, stationary
process� yt � t ����� generatedby statespacesystemof
theform

xt � 1 	 Axt 
 But

yt 	 Cxt 
 Dut
(1)

wherext is the n-dimensionalstateand � ut � is white
noisewith varianceEutu�t 	 Σ � 0. W.l.o.g. it is as-
sumedthat D 	 I , and that the system(1) is min-
imal, stable (λmax� A�� 1), and strictly minimum
phase(λmax� A � BC ��� 1); i.e. (1) is in innovation
form. Here λmax � X � denotesthe maximummodulus
of the eigenvalues of a matrix X, i.e. λmax � X � 	
maxi ��� λi � X � ��� , whereλi � X � aretheeigenvaluesof the
matrix X.

Themodel(1) is a realisationof thetransferfunction

µ � z� 	 ∑
i � 0

µiz
i 	 D 
 C � z� 1I � A��� 1B (2)

wherez denotesthebackwardshift, i.e. z� yt � t ����� 	� yt � 1 � t ����� . By minimality, the transferfunctionhas
McMillan degreen. In the sequel,��� n� denotesthe
setof stable,strictly minimumphase,(p � p) transfer
functionswith McMillan degreen.

Throughoutthis paper a shorthandnotation of the
form

A B
C D

(3)

is usedto describestatespacesystemsof the above
form. Given the transfer function µ � z� , the system
matricesof a minimal realisationareuniqueonly up
to transformationsof thestatespace;i.e. for any non
singularT �� n � n

Ã B̃
C̃ D̃ 	 TAT � 1 TB

CT � 1 D
(4)

is a realisationof µ � z� .
Next, considera model

F G
H I

(5)

for a transferfunction ν � z� 	 I 
 H � z� 1I � F � � 1G ���� k � , for somek � n. Togetherwith avarianceΩ � 0,
this definesan alternative (in generalmisspecified)
model for � yt � . The quality of this model may be
assessedby thenegativeasymptoticGaussianlog like-
lihood

l � F � G � H � Ω;A � B � C � Σ � 	
logdetΩ 
 Ev�t Ω � 1vt

(6)

where � vt � is thepredictionerrorbasedon(5):

vt 	 ν � 1 � z� yt 	 ν � 1 � z� µ � z� ut  (7)

The minimum valueof l �"!#� is equalto logdetΣ 
 p,
which is attainedif f Ω 	 Σ andµ � z� 	 ν � z� holds,i.e.
if f Ω 	 Σ and(5) is equalto (4) for someT.

Model reduction is the problem to find the best
model(5) of orderk � n, with respectto thecriterion
function (6), i.e. to find parameters� F � G � H � Ω � such
that(6) is minimal. In generalthereis no closedform
solution to this optimisationproblem,and thus the
optimal modelhasto be found by iterative nonlinear
optimisationmethods.

On theotherhand,principalsubsystemtruncation(in
the following simply called truncation)is a simple
approachto getareducedordermodel.Let thesystem
matricesbeconforminglypartitionedas:

A11 A12 B1

A21 A22 B2

C1 C2 I
(8)

whereA11 �$� k � k. Then the truncatedmodel is de-
finedas:

F G
H I

: 	 A11 B1

C1 I
(9)

In general,there is no guaranteethat the truncated
model is minimal, stable,and minimum phase.Fur-
thermore,it is easyto seethat the truncatedmodel
is a ‘bad’ approximationof the true model, unless� A12 � B2 � and/or � A21 � C2 � are‘small’.

Sincethesystemmatricesareuniqueonly up to basis
transformations(4), it is importantto selecta suitable
realisationbefore truncation.In particular, balanced
realisationshave been proposedby many authors,
becauseof their good behaviour from the point of
view of modelreduction.For anoverview of balanced
realisationsseee.g.(Ober, 1996),(McGinnie,1994).

Herethefollowing two balancingschemesareconsid-
ered:

Let thetwoGramians� P� S� bedefinedasthesolutions
of theLyapunov equations:

P 	 APA� 
 BΣB� (10)

S 	 Ā� SĀ 
 C� Σ � 1C (11)

where Ā 	 A � BC. The system(1) is said to be in
minimumphasebalancedform if f

P 	 S 	 diag� γ1 �  % & � γn � (12)

whereγ1 ' !&!&! ' γn ' 0 arecalledtheminimumphase
singularvaluesof the system.This schemehasbeen
introducedandanalysedin (McGinnie,1994).



Considerthetwo Gramians� P� P̄� definedby

P 	 APA� 
 BΣB� (13)

P̄ 	 A� P̄A 
 C̄� Σ̄ � 1C̄ (14)

where M 	 APC � 
 BΣ, C̄ 	 C � M � P̄A, Σ̄ 	 Σ 

CPC �(� M � P̄M, andwhereP̄ is the minimal solution
of the above Riccati equation(14). Thesystem(1) is
saidto bein stochasticallybalancedform if f

P 	 P̄ 	 diag� ρ1 �  & % � ρn � (15)

where1 ' ρ1 ' !&!&! ' ρn ' 0 are the canonicalcor-
relation coefficients of the process� yt � . Note that P̄
is the statevarianceof a (minimum phase)backward
realisationof the process� yt � . This schemehasbeen
proposedin (DesaiandPal, 1984).

Thereis a closerelationbetweenthesetwo balancing
schemes,as can be seenby the following lemma(a
proof of this lemmafor thecontinuoustime casehas
beengivenin (McGinnie,1994)):

Lemma1. S 	 � P̄� 1 � P� � 1 andγ2
i 	 ρ2

i ) � 1 � ρ2
i � .

This implies that minimum phaseand stochastically
balancedrealisationsare relatedto eachother by a
diagonaltransformationT.

Thenext lemmacollectssomeimportantpropertiesof
thesetwo balancingschemes:

Lemma2. (1) The γi ’s (ρi ’s) do not dependon the
particularrealisationof thesystem.

(2) Thesystemis minimal if f γn
� 0 (ρn

� 0) holds.
(3) Thebalancedform is uniqueup to signchanges

T 	 diag�+* 1 �  & & �,* 1� , if all γi ’s (ρi ’s) are dis-
tinct.

Item (2) may be generalisedin the sense,that the
size of γk � 1 is a measureof the ‘distance’ of the
transferfunctionµ � z� to thesetof lowerordertransfer
functions ��� k� . In particular, onecanderive bounds
for the approximationerror of the truncatedsystem,
which dependon the singular valuesγ j , j

�
k; see

e.g. (McGinnie, 1994).However, theseboundsrefer
to thecontinuoustime case,andto theH∞ norm.

Here the performanceof thesebalancedtruncation
schemeswill be evaluatedwith respectto the likeli-
hoodfunction (6). In particular, thecasethat the true
transfer function is ‘close’ to the set of k-th order
transfer functions ��� k� is considered.To be more
precise,a sequenceof modelsconverging to a system
of order k will be considered.In order to makethe
exposition simpler, the analysisstartswith a given
sequenceof realisations,ratherthanwith a sequence
of transferfunctions.

Let A � ε � , B � ε � , C � ε � , Σ � ε � , be a sequenceof realisa-
tions,which continuouslydependon thescalarε ' 0.

Throughoutthepaper, it is assumedthat:

A � ε �&� Ā � ε � areuniformly stable
Σ � ε � � 1 	 O � 1�
P� 1

11 � ε � 	 O � 1� S� 1
11 � ε � 	 O � 1�

P22 � ε � 	 O � ε2 � S22 � ε � 	 O � ε2 � (16)

Hereandin thesequel,subscripts,like P11, refer to a
partitioning of the correspondingmatrix conforming
to (8). The notationX � ε � 	 O � εs � meansthat there
exist constantsε0

� 0, andc � ∞ suchthat - X � ε �.-/�
cεs holds for all ε0 ' ε ' 0. Furthermore - X - 	0

λmax � X � X � denotesthe 2-norm of the matrix X.
Uniformstabilityis definedasfollows:A (continuous)
squarematrix function X � ε � is said to be uniformly
stable if f there exist constantsε0

� 0, c � ∞, and
λ � 1 suchthat - X � ε � k -1� cλk holdsfor all k ' 0 and
ε0 ' ε ' 0.

Togethertheseassumptionsimply that2 thepolesandzerosof the transferfunctionsare
uniformly boundedaway from theunit circle.2 thelimiting transferfunctionis in �3� k� .2 the transfer functions are, in a certain sense,
boundedaway from the setof systemsof order
s � k.

Thenext lemmagivesanequivalentformulationof the
above assumptions.

Lemma3. Theassumptions(16) areequivalentto

A11 � ε �&� A22 � ε �4� Ā11 � ε � andĀ22 � ε �
areuniformly stable
Σ � 0� � 0

P11 � 0� � 0 S11 � 0� � 0
A12 � ε � 	 O � ε � A21 � ε � 	 O � ε �
B2 � ε � 	 O � ε � C2 � ε � 	 O � ε � (17)

Note that the above realisationsneednot to be in
balancedform. However, it is assumedthat thelower
right � n � k �5�6� n � k � blocksof the two gramiansP
andSconverge to zerowith the rateO � ε2 � . This will
imply that the truncatedmodel is a ‘good’ approxi-
mationof the truemodel.However, aswill be shown
in theorem5, onegetsbetterresultsif the gramians
are ‘almost’ block diagonal.Sucha block diagonal
realisationmaybeobtainedby thefollowing lemma.

Lemma4. Let a sequenceof systemssatisfying(16),
anda sequenceof (continuous)transformationssatis-
fying

T 	 7
I T12 � ε �

T21 � ε � I 8
whereT12 � ε � 	 O � ε � andT21 � ε � 	 O � ε �  (18)

begiven.

(1) Thetransformedsystemdefinedby Ã 	 TAT � 1,
B̃ 	 TB, C̃ 	 CT � 1 alsosatisfies(16).



(2) If the transformationis chosen to be T12 	
S� 1

11 S12, T21 	 � P21P� 1
11 , then

P12 � ε � 	 O � ε3 � and S12 � ε � 	 O � ε3 � (19)

holds.

Notethatin generalP12 	 O � ε � andS12 	 O � ε � . If (19)
holds, then the sequenceof systemsis said to be
minimumphaseblockbalanced.

In orderto formulatetheresults,a parametrisationof
theset ��� k � of transferfunctionsof McMillan degree
k is needed.

Let π denote the k � k 
 2p� dimensionalvector of
stackedentriesof the matrices � F � G � H � . There is a
mapping φ̄ : π 9: θ 	 φ̄ � π ���6� 2kp, which attaches
a vector of parametersto any realisation.Of course
φ̄ � π1 � 	 φ̄ � π2 � holds if f the transferfunctionscorre-
spondingto π1 andπ2 areidentical.Conversely, there
is a mappingφ : θ 9: π 	 φ � θ � , which attachesa par-
ticular realisationto a vectorof parameters.E.g. one
couldusea parametrisationbasedon balancedforms,
seee.g.(Ober, 1996).Thesemappingsarecompatibel
in thesenseφ � φ̄ � θ ��� 	 θ.

In particularlet θ0 	 φ̄ � π0 � , whereπ0 correspondsto
thelimit � F � 0�4� G � 0�4� H � 0��� 	 � A11 � 0�&� B1 � 0�&� C1 � 0�,� .
Thenit sufficient that theabove mappingsaredefined
andsmoothin anopenneighbourhoodof π0 andθ0.

Note that the likelihood function dependson the pa-
rametersof the transferfunction π (θ), on the vari-
anceΩ, as well as on the data generatingprocess� A � B � C � Σ � .Therefore,let Π denotethestackedvector
of entriesin thematrices� A � B � C � Σ � . Furthermorelet
Π0 correspondto thelimit � A � 0�&�  & & � Σ � 0�,� .
In order to simplify the expositions,only the simpli-
fiedmodelreductionproblemwith fixedΩ 	 Σ is con-
sidered.This simplificationis justifiedby Theorem5,
item(1). Therefore,with aslightabuseof notation,let

L � θ;Π � 	 l � φ � θ � ;Π � 	
l � F � G � H � Σ;A � B � C � Σ � (20)

Let θ̄ and θ̂ denotethe parametersof the truncated
and of the optimal systemrespectively. In order to
assessthe distance � θ̄ � θ̂ � , the following regularity
assumptionswill beimposedon L:

There exist an open neighbourhood �,;<�>=��@?�A� 2kp �B�DC n� pE 2 � of � θ0 � Π0 � suchthat2 thelikelihoodfunctionhasa uniqueglobalmini-
mumfor all Π �6=2 theinverseof theHessianof L is boundedfor all� θ � Π �F�G��;H��=�� .

Now themainresultof thepaperis asfollows:

Theorem5. Considera sequenceof systemssatisfy-
ing assumptions(16),andassumethat theabove reg-
ularity conditionson the likelihood function are ful-
filled. Furthermore,let s 	 0 in general,ands 	 2 if
thesystemsareminimumphaseblockbalanced.

(1) Evtv�t 	 Σ 
 O � ε4 � .
(2) Thegradientof the likelihood functionsatisfies:

∂L
∂θ � θ̄ � Π � 	 O � ε2� s �

(3) � θ̄ � θ̂ � 	 O � ε2� s � .
The first item shows that the truncatedmodel is a
‘good’ approximationof thetruemodel,providedthat
the lower right blocks of the gramiansare ‘small’.
This canbe only achieved,whenthe � n � k � smallest
singular values γ j , j ' k are ‘small’, and when a
suitable realisationhas been chosen.On the other
hand,it followsfrom items(2) and(3) that,by picking
a minimum phasebalancedrealisation,the truncated
systemwill convergevery fastto theoptimal reduced
ordersystem.In this sense,minimumphasebalanced
truncationis locally optimal.Note that the truncated
systemscorrespondingto a blockbalancedrealisation
andto a balancedrealisationrespectively, arerelated
to each other by a state spacetransformationand
thus representthe samek-th order transferfunction.
Hence, for the above results only an approximate
block balancedrealisationis needed.

By Lemma1, it is clearthat the above Theoremand
thusthe samelocal optimality propertyhold true for
stochasticallybalancedtruncation.

3. EXAMPLE

In this sectionthe resultsobtainedwill be illustrated
by thesimplesecondorderSISO(p 	 1) systems:

A � ε � B � ε �
C � ε � 1 	 � 0  25 0  7ε 2  3� 0  7ε 0  5 0  3ε� 0  15 � 0  05ε 1

with Σ 	 1. The goal is to find an optimal first
order system (k 	 1). We will compare the per-
formance of the truncatedsystem θ̄ 	 � f̄ � ḡ� h̄� 	�"� 0  25� 2  3 ��� 0  15� , with the minimum phasebal-
ancedtruncatedsystemθ̃ 	 � f̃ � g̃� h̃� , andtheoptimal
first order model θ̂ 	 � f̂ � ĝ� ĥ� . Notice that the latter
two reducedmodelsdependon ε, whereas̄θ doesnot
dependonε, andis equalto thelimit θ0. In thissimple
example,onemayuseθ 	 � f � f � gh� , i.e.thepoleand
thezeroof thetransferfunction,asparameters.

Figure1 shows thepartialderivativeof thelikelihood
functionwith respectto f , for thetwo truncatedmod-
els.Figure2 showsthedistanceof thepoles f̄ , f̃ of the
two truncatedmodelto thepoleof theoptimalmodel
f̂ . In both plots a log-log scaleis used,suchthat the
rateof convergencecanbeeasilyseen.Note thatone
obtainssimilarpicturesfor theotherpartialderivatives
andfor thezeroof thereducedordersystem.
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Fig. 1. Absolute value of the partial derivative of
the likelihood function with respectto f , as a
function of ε. The dashedline correspondsto
the truncatedmodel, and the solid line to the
minimumphasebalancedtruncatedmodel.
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Fig. 2. Absolutedifferenceof the polesof the trun-
catedmodel(dashedline), andof the minimum
phasebalancedtruncatedmodel(solid line) with
respectto the pole of the optimal reducedorder
model.

4. CONCLUSIONSAND REMARKS

In this paperthe problem of finding a simple state
spacemodel for an ARMA processis considered,
where the approximationerror is measuredby the
asymptoticGaussianlikelihood. It has beenshown
that, given certain regularity conditions, the model
obtainedby minimumphasebalancedtruncation(and
equivalently by stochasticallybalancedtruncation)
converges to the optimal reducedorder model with
a rate O � ε4 � , when the � n � k � smallestminimum
phasesingular valuesof the true n-th order system
convergeto zerowith rateO � ε2 � . For othertruncation
schemes,in general,only arateO � ε2 � will beattained.
In this sense,minimum phasebalancedtruncationis
‘locally optimal’. Sloppyspeakingthis means,mini-
mumphasebalancedtruncationis ‘almost’ optimal if
the true n-th ordersystemis ‘close’ to the setof k-th
ordersystems.

This result has a close relation to the so called
CCA subspaceestimationmethod.It hasbeenshown
in (DahlenandScherrer, 2001)thattheCCA subspace
is asymptoticallyequivalentto thefollowing two step
procedure(seealso(Dahlen,2001)):

(1) a (long) autoregressive model is estimatedfrom
thedata.

(2) a stochasticallybalancedtruncationof this AR
model gives the desiredestimateof the state
spacemodelgeneratingthedata.

Therefore,in view of the resultsobtainedhere, the
secondstep,in acertainsense,is closeto optimalwith
respectto thelikelihoodfunction.

5. PROOFS

PROOF of Lemma 1. LetI � 	 � C� � A�C � �  & & �
Y �� 	 � y�t � y�t � 1 �  & & �
Γ �J	 EY� Y ��

andlet theinfinite block toeplitzmatrix K bedefined
by its block entries: K i j 	 0, for j

�
i, K ii 	 I andK i j 	 CAi � j � 1B for i

�
j . Furthermore,an infinite

block diagonalmatrix L is definedby L ii 	 Σ. Then
it is straightforwardto seethat

Γ ��	 I P
I � 
 KMLMK �

Thematrix inversionlemmathengivesI � �NKMLMK � � � 1 I 	 I � Γ � 1� I �I � Γ � 1� I � P� 1 � I � Γ � 1� I �,� 1 I � Γ � 1� I  
In (Lindquist and Picci, 1996) it is proved thatI � Γ � 1� I 	 P̄, and therefore,againby the matrix in-
versionlemma,oneobtainsI � �NK/L1K � ��� 1 I 	 � P̄� 1 � P�,� 1

Finally it is easyto prove that K � 1 I 	 � C�A� Ā�C�A�  & & �O�
andthusI � �NKMLMK � �,� 1 I 	 ∑

j � 0

� Ā� � jC� Σ � 1CĀ j 	 S P
Themain tool in proving Theorem5 is the following
lemma:

Lemma6. Let A � F betwo squarematricessatisfying- Ak -Q� cλk, - Fk -Q� cλk, for someλ � 1, then the
solutionof thegeneralisedLyapunov equation

X 	 AXF 
 Q

satisfies- X -1�>� c2 ) � 1 � λ2 ���.- Q - .



PROOF. - X - 	 - ∑
k � 0

AkQFk -1� ∑
k � 0

c2λ2k - Q -
PROOF of Theorem 5. Firstageneralexpressionfor
thegradientof the likelihood function is derived.Let
F̄ 	 F � GH, L̄ � z� 	 � z� 1I � F̄ � � 1 andwt 	 L̄ � z� Gyt ,
thenthetotalderivativeof thepredictionerrorvt with
respectto theentriesin F , G, andH is givenby:

vt 	 ν � 1 � z� yt 	 � I � HL̄ � z� G� yt� dvt 	 HL̄ � z�.� dF � GdH � wt
 HL̄ � z� dGvt 
 dHwt

(21)

A statespacemodelfor � v�t � w�t �"� (with inputs � ut � ) is
givenby:

Â B̂
Ĉ D̂

: 	 A 0 B
GC F̄ G
0 I 0
C � H I

(22)

Giventhis model,define:

P̂ 	 ÂP̂Â� 
 B̂ΣB̂�
M̂ 	 ÂP̂Ĉ� 
 B̂ΣD̂ �
X 	 F̄ � XÂ 
 H �Ω � 1 � C �&� H �
Y 	 XM̂ 	 � Y1 � Y2 �&� Y1 �� k � k

Γvv 	 Evtv�t 	 � C �&� H � P̂ � C �%� H � � 
 Σ
Γvw 	 Evtw�t 	 � C �&� H � P̂ � 0 � I � �

Then,by standardcalculus,the following expression
for the total derivative of the likelihood may be ob-
tained: �B� 1) 2� dl 	 � Ev�t Ω � 1dvt 	

E � v�tΩ � 1 ∑
j R 0

L � j dzt � j 
 v�tΩ � 1dHwt � 	
tr � Y � � dF � GdH � dG�,� 
 tr � ΓwvΩ � 1dH � (23)

HereL � j 	 HF̄ j � 1, dzt 	 � dF � GdH � wt 
 dGvt and

∑
j R 0

L jΩ � 1Evt � j � w�t � v�t � � 	
∑
j � 0
� F̄ � � jH �Ω � 1 � C �&� H � Â jM̂ 	

XM̂ 	 Y

have beenused.

Now considerthecaseof a sequenceof datagenera-
tion models(16), andwherethereducedordermodel
is obtainedby truncation,andwhereΩ 	 Σ. In this
casethemodel(22) (aftera suitablestatetransforma-
tion) maybewrittenas:

Â B̂
Ĉ D̂

: 	 A11 A12 0 B1

A21 A22 0 B2

0 � Ā12 Ā11 0
I 0 I 0
0 C2 � C1 I

(24)

By Lemma6, oneobtains

P̂ 	TSU P11 O � ε1� s � O � ε2� s �
O � ε1� s � O � ε2 � O � ε3 �
O � ε2� s � O � ε3 � O � ε4 �

VW
M̂ 	XSU A11P11 
 O � ε2� s � B1Σ 
 O � ε2� s �

A21P11 
 O � ε1� s � B2Σ 
 O � ε3 �
O � ε2� s � O � ε4 �

VW
X 	 � O � ε2� s �4� O � ε1� s �4�%� S11 
 O � ε2� s �,�  

Hence,it followsthatΓvv 	 Σ 
 O � ε4 � , Γvw 	 O � ε2� s �
andY 	 O � ε2� s � . This proves items(1), and(2), by
using(23) andthefollowing relation

∂L
∂θ
� θ̄ � Π � 	 ∂l

∂π
∂φ̄
∂θ  

By themeanvaluetheorem,it followsthat

∂L
∂θ
� θ̄ � Π �.� θ̄ � θ̂ � 	 � θ̄ � θ̂ � � ∂2L

∂θ∂θ � � θ YZ� Π �.� θ̄ � θ̂ �
whereθ Y 	 αθ̄ 
 � 1 � α � θ̂, for some0 � α � 1. Now
theboundednessof theinverseof theHessianimplies
item(3).
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