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Abstract: Hot rolling mills suffer of severe torsional vibration in particular working 
condition (thin thickness). These vibrations are often explained as the result of an 
exogenous disturbance amplified by a resonance effect. Herein, another interpretation is 
supported, namely the true origin is to be found in the interaction between the kinematic 
chain and the plastic deformation of the strip in the roll bite. Thus, the vibrations are the 
result of an unstable limit cycle due to these interacting dynamics. Copyright © 2002 IFAC 
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1 INTRODUCTION 

 
The market of hot rolling mills has been 
characterised by an increasing demand in the 
production of strips with light gage thickness. This 
calls for an increased demand in the control 
performances; see (Nakagawa, et al. 1990; Grimble 
& Hearns 1999) for survey papers. In these mills, the 
kinematic chain may exhibit torsional oscillations 
during the strip-threading phase. For very thin strips, 
oscillations have non-negligible amplitudes and not 
fade out, causing loud noise and remarkable mass 
vibration of the stand. This phenomenon has been 
observed in many plants (Anbe et al. 1990; Doi, et 
al., 1987). Interestingly enough, such vibrations 
occur at the work rolls of the stands, whereas the 
main drive is not subject to vibrations. The 
neutralisation of this effect is a major task to 
guarantee the plant integrity. For, the basic 
preliminary task is to understand the origin of such 
vibration. This is the objective of this paper.  
The paper is organised as follows: the models both of 
the kinematic chain and of the material in the roll bite 
is presented in section 2. By means of the overall 
system so obtained, it is possible to supply a sound 
explanation of the vibrations (section 3). Some 
typical experimental behaviours of the plant confirm 
our interpretation, as discussed in section 4. 
 
 

2 THE MODEL 
 

A Finishing Mill Stand (fig 1) consists of the 
kinematic chain, moved by the main drive, the stand 

with the hydraulic actuator and the material in the 
roll bite. In the figure and in the sequel, the acronym 
WR will be used for “work roll”. A detailed 
description of the derivation of our model requires 
many pages, and is therefore omitted here due to 
limitations in space. Only the main steps of the 
derivation will be outlined. 
As for the stand and the main drive, the models 
already available in the literature are used, and 
therefore their description is omitted for the sake of 
conciseness, see e.g. (Evans & Vaughan, 1996; Kugi, 
et al., 2001). The main focus is herein on the models 
of the kinematic chain and that of the material.  
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Fig. 1. Kinematic Chain - Typical Layout. 
 
 

2.1 Kinematic chain model 
 
The basic constitutive element of the kinematic chain 
is the torsional model of a shaft. Assuming the shaft 
homogeneous, it is possible to subdivide a shaft into 
a number of slices -say N- with a momentum of 
inertia Ji=Jshaft/N. Each slice is linked to the 
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surrounding slices with two springs, representing the 
torsional stiffness, see fig 2. 
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Fig. 2. Basic torsional system 

 
The basic conservation equation for such a model is:  
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(2.1) 

where Ti is the external torque acting on the i-th slice. 
The same subdivision in slice has been applied to the 
full kinematic chain. Each device has been modelled 
using one, two or four inertias, as shown in fig. 3, 
where the blocks in dashed lines represent the main 
devices of the system. The equation 2.1 is replicated 
for the various inertias of the kinematic chain. 
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Fig. 3. Kinematic Chain Model. 

 
Obviously, for specific parts of the chain, some terms 
of eq. 2.1 are missing. For instance, the extreme parts 
of the system, such as the main drive, require a single 
spring in their model.  
In this way, modelling element by element the 
kinematic chain, the whole model worked out can be 
given the following compact matrix form: 
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(2.2) 

Where the state variables are angular displacements 
organised in the vector ϑ  and the angular speed 

(vector ϑ� ) of each inertia; the inputs are the main 

drive torque (TM), top WR resistant torque ( T
RT ) and 

bottom WR resistant torque ( B
RT ); the outputs are the 

main drive speed (ωM), top and bottom WR angular 

speed ( T
WRω , B

WRω ); A, B and C are 3 matrices 

describing dynamic behaviour of the system. 
 

2.2 Modelling the plastic deformation process 
 

The WR resistant torques ( T
RT  and B

RT  for the top 

and bottom rolls, respectively) act as inputs for the 

kinematic chain. In many papers they are taken as 
exogenous signals, see e.g. (Anbe et al., 1990; Doi, et 
al., 1987). Herein, the resistant torque is considered 
as a dynamic function of the plastic deformation of 
the material in the roll bite. Precisely, the resistant 
torques on the WRs is assumed to be depend upon i) 
the force FR actuated by the stand on the strip and ii) 

the WR speeds B
WRω  (bottom) and T

WRω  (top). 

Thus, the conceptual block-diagram of the whole 
system is depicted in fig. 4, where h2 denotes the 
strip thickness at the exit of the roll bite. 
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Fig. 4. Interaction between Kinematic chain and strip 
 

The purpose of this Section is the development of the 
mathematical model of the material in the roll bite 
behaviour. The existing literature on this process 
enumerates a number of publications devoted to 
static models (Orowan, 1943; Tselikov, 1967), from 
which design correlations, describing the relevant 
variables (rolling force and torque, speed, thickness, 
etc), have been developed. The dynamic model here 
proposed takes advantage of these studies, but it also 
considers dynamic phenomena related to the mass 
storage of material in the roll bite and to the stick-
slipping dynamic behaviour. With the model here 
presented, it is possible to explain the occurrence of 
vibrations. 
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Fig. 5. Slip-sticking friction in the roll bite. 

 
With reference to fig. 5, the main assumptions 
carried out are: 
• The rolling pressure is constant in the entire 

contact area. 



• The neutral point (i.e. the point where the 
average velocity of the strip coincide with the 
WR velocity) is placed at the exit of roll bite, so 

that WR
M
WR2 Ru ω= , where M

WRω is the average 

of WR speed. 
• WRs are undeformable. 
 
The strip model is developed in two steps, by writing 
first the mass conservation equations and then 
passing to the description of the stick-slipping 
behaviour.  
 
Mass conservation. With h(t,x) and u(t,x) are denoted 
the thickness and the average speed of the strip at 
time t and longitudinal coordinate x. Following the 
lead of Pawelski, et al. (1987), the one-dimensional 
mass conservation equation is easily derived as: 
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The conservation equation (2.3) has been integrated 
along the arc of contact. For the integration of first 
term, it has been taken into account that: the lower 
integration limit depends on time and the arc of 
contact can be assumed to be parabolic. For the 
integration of second terms has been taken into 
account the steady state mass conservation equation 
(h1u1=h2u2) and the strip reduction (h1-h2) has been 
calculated inverting the following well-known 
formula (Ginzburg, 1989):  

( ) ( )21WR
M
WRR hhRF −ωσ=  (2.4) 

The result is: 
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A linearized version of this equation is obtained as: 
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Where the subscript 0 is used to indicate evaluation 
of the variable at the steady state; as usual, δ denote 
variation; and finally the following assumption has 
been carried out: 
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In the sequel, this linearized equation will be used, 
which suffices to obtain a fair description around the 
steady-state. In particular, it enables the study of the 
stability of the kinematic-material loop.  

Stick-slipping behaviour. As shown in fig. 4, rolling 
torques are the exit signals of material model towards 
the kinematic chain model. In order to calculate the 
rolling torque, it is necessary to investigate in depth 
the interaction between the roll surface and the rolled 
material see e.g. (Orowan, 1943). 
Herein, a dynamical modelization of such interaction 
will be presented. Precisely, the contact takes place 
through two surfaces, the upper contact surface and 
the lower one. 
Moreover, various types of contact areas will be 
distinguished, since in some points the material is 
stuck to the WR surface, whereas in other points 
slipping takes place. Precisely, three different areas 
of contact between the material and the WR surfaces 
are considered (see fig. 5). Only in the intermediate 
area B, sticking occurs, while, in the remaining parts, 
the slipping effect dominates. Correspondingly, the 
friction coefficient is the static coefficient µS in area 
B and the dynamic coefficient µd in the other parts, 
with µD < µS. Actually, having assumed that the 
neutral point is practically located at the exit of the 
roll bite, the area C may be neglected. In conclusion, 
the torque generated in an elementary contact area 

∆S is given by WRRiR RSpT ∆µ=∆ , where µi = µS 

in the zone B, and µi = µD other-where. By 
integrating over the whole contact area, one can 
define the resultant friction coefficient as 

( )uDuS f1f −µ+µ . The coefficient uf  appearing here 
is the ratio between the area of zone B and the total 
area of contact. In other words, it is the sticking 

fraction. Obviously uf ∈[0,1], but, as a matter of 

fact, the sticking fraction ranges, in steady state 

conditions, in a narrower interval, say uf ∈[f1,f2] due 

to physical constraints, depending mainly on the state 
of the strip surface. It has been assumed that these 
limits are the upper and lower bounds also in 
transient conditions. 
Considering that the vertical force is given by eq. 
(2.4), the torque acting on the top contact surface is 
given by: 
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(2.7) 

Actually, this is the top WR torque: an entirely 
analogous equation holds for the bottom WR, torque. 

Obviously, T
uf denotes the sticking fraction for the 

upper WR; B
uf will denote the same fraction for the 

bottom WR.  
Notice that the partition of the contact area in sub-
areas with different friction coefficients is made in 
many papers, as in (Ekelund, 1933; Ginzburg, 1989). 
The main innovative contribution of this paper is to 
consider the possibility of a time variability in the 

sticking fractions T
uf and B

uf . Indeed, against a 
sudden increment in the WR speed, the equilibrium 
between the sticking and slip breaks down, and the 
stick zone (zone B) undergoes a sudden shrinkage; 



after some time, this effect fades out. 
Correspondingly, after a sudden reduction of 

coefficient T
uf , there is a transient, at the end of 

which, T
uf  recovers the initial value. The following 

dynamic relation captures this: 
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where, kd and τd are parameters dependent on 
physical variables (temperature, material 
characteristic etc.) and: 
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Remark (the non-minimum phase behaviour)  
The qualitative behaviour of the torque can be easily 
worked out on the basis of the previous 
considerations. Precisely, the transfer function from 

the WR speed to the top rolling torque T
RT  (obtained 

from the above equations by linearizing the output 
transformation) is given by:  
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and analogously for the bottom rolling torque 
B*

uTδ . 

Note that such function has always a non-minimum 
phase zero. 
 
 

3. THE VIBRATION ENIGMA EXPLAINED 
 
The overall block diagram is depicted in Fig. 6, 
where Zij are the kinematic chain transfer function, 
A(s) is the transfer function of the main drive, 
“MATERIAL MODEL” is the non-linear model of 
plastic deformation in the roll bite.  
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Fig. 6. Process block diagram. 
 

As can be seen, there are two feedback loops, for the 
top and bottom WR's. Second, all system blocks are 
linear with the exception of the models of the top and 
bottom plastic deformation. Precisely, in these two 
non-linear blocks, the nonlinearity comes from the 
structure of the equation of the rolling torques (eq. 
2.7). Besides that, there is another fundamental 
nonlinearity, namely the upper and lower bounds f1, 

and f2 for the sticking fractions T
uf  and B

uf . 

The plant is operated in closed-loop as indicated in 
fig. 4. The speed control block is simply a 
proportional-integral controller. Note that the main 
drive is equipped with a motor torque regulator. The 
behaviour of these blocks closing the loop is known.  
A Simulink-based simulator of the rolling process 
has been developed. The parameters of the model are 
the mechanical data (inertia's, stiffness, geometrical 
dimensions, etc.) and the steady state conditions 
(rolling schedule, friction coefficients, yield stress, 
etc.). In this paper, as steady state conditions have 
been considered those associated with a low 
thickness strip production (between 1.5 and 2 mm). 
Each loop in Fig. 6 can be diagrammatically sketched 
as indicated in Fig. 7, which makes reference to the 
top WR. Note that Z22(s) is the transfer function 
expressing the effect of the rolling torque on the WR 
speed and F(s) is the transfer functions of the 
linearized model relating the WR speed to the rolling 
torque (eq. 2.9). Such simple scheme has the feature 
of pointing out the interaction between the material 
plastic deformation effect and the process kinematics.  

F(s)
ROLLING PROCESS

Z22(s)
KINEMATIC CHAIN

TR
T ωWR

T

 
Fig. 7. The Basic Feedback Loop. 

 
The Bode diagrams of the obtained open-loop 
transfer function L(s)=F(s)Z22(s) is shown in Fig. 8. 
From these diagrams, it turns out that the elementary 
feedback loop is unstable, note that at approx. 100 
rad/s the gain is grater than 0 dB and the phase delay 
is greater than 180°. 
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Fig. 8. Open Loop Bode Diagram. 

 
Passing now to the overall system of fig. 6, the model 



can be linearized by replacing the non-linear blocks 
representing the plastic deformation of the material in 
the roll bite with the transfer function F(s).  
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Fig. 9. Closed Loop Pole Map. 

 
Fig. 9 shows low frequency system poles, when the 
two loops created by function F(s) are closed. It is 
important to note that there are two pairs of unstable 
and complex conjugate eigenvalues. The imaginary 
parts of the unstable eigenvalues are slightly 
different, 16.5 Hz (104 rad/s) for a pair and 17.5 Hz 
(110 rad/s) for the other. 
This closed loop instability means that the 
equilibrium point corresponding to the considered 
working conditions is not attractive. Consequently, 
the overall plant cannot keep a steady-state working 
condition; rather, the variables evolve towards a limit 
cycle, whose characteristics are imposed by the 
specific non-linearity of the plant. In this way, it is 
possible to explain the oscillatory behaviour 
experimentally observed in hot rolling mills during 
the production of low thickness (less than 2 mm.) 
strips. 
Usually, the oscillations observed in hot rolling mills 
are explained as a resonance effect activated by an 
external periodic disturbance, e.g. a torque ripple 
generated by the cyclo-converters. Herein, an 
innovative viewpoint is provided, consisting in 
viewing the vibrations as a by-product of instability 
of the equilibrium point in a feedback loop. 
Instability arises due to the interaction of the inherent 
resonance of the kinematic chain with the dynamical 
behaviour of the material deformation in the roll bite. 
Usually, the rolling torque is seen as a constant. 
Alternatively, the dependence of the torque upon the 
working roll speed is described by an algebraic 
relation (Wang 1998). Here, a proper modelization is 
investigated, where the dynamical behaviour of the 
material deformation in the roll bite is duly 
considered. Eventually, this leads to explain 
vibrations as an instability effect of a feedback 
system. 
 
 

4 IS THE FEEDBACK INTERPRETATION OF 
VIBRATIONS SUPPORTED BY THE 

EXPERIMENTAL EVIDENCE? 
 
Above has been presented a model explaining the 
vibrations in terms of feedback instability in the loop 

generated by the interaction of the kinematics with 
the material deformation. However, as in any 
scientific investigation, the only way of 
substantiating a theory is to look for its experimental 
evidence.  
The main process variables have been measured, 
Precisely, measurements refer to the stand where 
vibrations were observed (typically this is the second 
or third stand out of six stands). Among plus of 100 
signals measured, it is important to quote the top and 
bottom WR speeds (taken with laser device) and 
torsional torque through the spindles (by means of 
two strain gauges installed on each spindles close to 
the WR). However, the determination of the rolling 
torque appearing in our model requires a computation 
based on the kinematic chain equation.  
The measurements have been repeated in various 
work conditions, for final thickness (at the exit of the 
last stand) ranging from 1.5 mm to 5 mm. These 
following diagrams refer to measurements in stand 3 
of a hot strip mill plant with 6 stands, where the final 
thickness was 1.8 mm and vibrations were observed.  
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Fig. 10. Torque measured on the spindles. 

 
As can be seen in Fig. 10, there is an initial phase 
(the so-called threading phase) during which the high 
intensity vibrations occur, followed by a damping 
phase. In normal conditions (thickness above 2 mm.), 
the damping is effective, and vibrations fade out. On 
the opposite, in our case, after the initial transient, 
there is a permanent oscillation on both top and 
bottom shafts. The frequency of the oscillations is 
about 17 Hz. Furthermore, the two oscillations are 
out of phase (the max-peak of the top spindle 
corresponds to a min-peak for the bottom spindle). 
 
 
4.1 The traditional explanation  
 
The usual way of explaining the vibrational effects is 
that vibrations are the result of exogenous 
disturbances acting on the kinematic chain. The 
candidate disturbance is the motor torque ripple 
produced by the cyclo-converter, amplified by the 
chain resonance effect. According to this 
interpretation, oscillations are explained by means of 
the kinematic chain only, as a purely mechanical 
resonance effect. 
To probe this possible explanation, the spectrum of 
the electric motor torque has been compared with the 



spectrum of the torque through the spindle (both 
signals are measured). If the usual explanation were 
correct, the peak of the two spectra should coincide 
each other, and should coincide with the resonance 
frequency of the chain (frequency which can be 
easily computed and turns out to be 16.5 Hz). 
Actually, the analysis of the two spectra does not 
support the above expectation: There is no apparent 
correlation between the signals.  
A second clue against this explanation is a typical 
feature of the top and bottom signals: once the 
threading transient has been fade out, they are out of 
phase, as can be seen from fig. 10. This feature was 
observed in all measurement trials, and is well known 
to the field specialists. Suppose again that the 
vibrations were produced by an exogenous signal; 
since the pinion stand produces an equal subdivision 
of the motor torque, and the transmission chains 
along the two shafts are almost coincident, the motor 
acts in the same manner on the two WR. Therefore 
the top and bottom oscillations should be in phase.  
 
 
4.2 Feedback explains vibrations  
 
In fig. 11, it is reported a simulation performed with 
our model referring to the same rolling conditions of 
those associated with the experimental data of fig.10.  
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Fig. 11. Simulation results of torque through the 

spindles.  
 
The comparison of the simulated trial and the real 
data is convincing evidence in favour of the validity 
of the model. Again fig. 11 shows that during the 
threading phase the rolling torque vibrations in the 
top and bottom WR are in phase; then, after a period 
of apparent fading, they turn to become persistent in 
time, and out of phase. 
 
 

5. CONCLUDING REMARKS 
 
In this paper, an explanation on the phenomenon of 
vibrations in hot rolling mills is provided. Usually, 
vibrations are interpreted in terms of resonance 
effects triggered by torque ripples due to cyclo-
converters. By analysing experimental data, it is 
shown that this interpretation is not sound, and 
instead an explanation in terms of instability in 
closed loop is proposed.  
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