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Abstract: This paper describes how high-level of Object-Oriented concepts can be used 
to provide a generic, portable and polymorphic Fuzzy Logic framework. It highlights the 
way in which such OO concepts allow the extension of the programming language 
idioms with the semantics of the fuzzy logic field. A progressive approach presents; in a 
first step Fuzzy Logic systems; then, relevant classes, design patterns and architectures 
are identified. The considered aspects cover the composite structure, the polymorphic 
behaviour and the building of a system of fuzzy expressions. Finally, an example 
illustrates how the framework can be used in a conventional design strategy. Copyright 
© 2001 IFAC. 
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1. INTRODUCTION 

The aim of this paper is to design portable fuzzy 
logic inference systems. It will be expressed using 
the syntax of the underliyng programming language 
with the fuzzy semantics. The portability of the fuzzy 
logic inference systems will be assumed by the 
programming language. Moving the designed system 
from the design computer to the final target (in-line), 
just needs a compiling stage with the final target 
compiler. So, the expertise domain of the Fuzzy 
Logic (variables, membership functions, operators, 
rules, ...) field have to be captured and have to take 
the form of an extension of idioms that the user has 
to manipulate. Moreover, the fuzzy system has to be 
flexible and have to provide polymorphic operators. 
They allow the studying of the impact of any kind of 
operators without redesining tasks. 

When a fuzzy inference system has to be designed, 
the only target of the designer is to set up the right 
fuzzy subsystem in order to master his problem. The 
task of writing software in this scope must not be an 
obstacle in the design process. It would be 
convenient if the designer had tools that took charge 
of the software complexity and responded to his 
problems. To create such tools, Object Oriented 
paradigms - among which Design patterns and 
software frameworks - can be exploited as valid 
modelling and implementation techniques in 
advanced control engineering (Maffezoni 1999). 
Design patterns are a generic solution to recurring 

problems which makes it easier to reuse successful 
designs and architectures. Software frameworks are 
semi-complete applications, which can be defined as 
reusable designs for an entire application or for part 
of an application (Fayad, 1999); they automate the 
generation of classes of an application. A Fuzzy 
Logic Framework involving several Design Patterns 
is presented here; it allows the building of Fuzzy 
Logic applications using the sole specifications 
required by a specific Fuzzy Logic system. UML 
diagrams (Muller, 1997) will be used to describe the 
study of the framework and design patterns. 

2. PROBLEM ANALYSIS 

A general fuzzy system must be analysed; pertinent 
objects and classes of the right granularity must be 
found and described with the appropriate vocabulary 
(Booch 94). From these considerations, a framework, 
which uses the elements discovered must be 
developed in order to make the designer’s task easier. 

Fuzzy Logic allows mapping from a given input to an 
output. This is illustrated by the following general 
fuzzy system: 

If x is "low" and y is "medium" then w is "low" 
If x is "low" or y is "high" then w is "high" 

This involves components such as variables, 
membership functions, Fuzzy Logic operators (and, 
or ...) and “if-then” rules (Zadeh 73). There are two 
types of fuzzy inference systems, the Mamdani and 
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the Sugeno types; their description can be found in 
the references (Mamdani 75) and  (Sugeno 85). The 
major differences between these two methods 
concern the implication part of a fuzzy rule and the 
way in which a fuzzy inference system is defuzzified. 

The building of any type of Fuzzy Logic inference 
system needs the use of classical or particular 
operators and membership functions suited to a 
specific system. In the case of particular operators 
and membership functions the user must be able to 
define them easily. 

At present, any kind of static Fuzzy Logic inference 
systems can be developed. However, if different 
types of fuzzy operators must be tested to determine 
the best structure of the fuzzy system, a user usually 
must rebuild a new fuzzy system. This process is 
time and money consuming and does not lead to an 
optimised design process. So, in an advanced fuzzy 
framework, a user must be able to change the nature 
of the operators without creating a new system at any 
time. 

To summerise what a designer has to do – i.e. to 
design and use a fuzzy subsystem - the different 
stages involved in such a process have to be 
identified. The use-case and sequence diagrams 
presented in figure 1 show, successively, the 
designer’s requirements and interactions between the 
designer and the framework during design and use 
processes. 
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Fig. 1 Use-case and sequence diagram of the building 
and use of a Fuzzy Logic inference system 

3. SIMPLE FUZZY EXPRESSION 
ARCHITECTURE 

Fuzzy rules suggest that a Fuzzy Logic system can be 
expressed as a collection of expressions. So, fuzzy 
operators and values look like operators and values in 
arithmetic expressions. In the above fuzzy rule 
system example, the different parts of the expressions 
are: 

- Variables: x, y, w. 
- Membership functions: "low", "medium", 

"high". 
- Fuzzy Operators: and (T-norm operator), or (T-

conorm operator), then (implication operator), 
aggregation. 

3.1 Composite facet of the architecture 

In fact, each component (variables, membership 
functions, operators) can be considered as an 
expression which can be evaluated. This implies that 
there is a hierarchy of expressions, which leads to a 
composite structure. The behaviour of this structure 
will be obtained by the evaluation of the composite 
expressions. 

The architecture of a fuzzy system distributes the 
different components into a hierarchical tree 
structure. Figure 2 illustrates the composite 
hierarchical structure of the fuzzy example given 
above. Moreover, each element has to be treated 
uniformly, whatever its nature; each element is an 
expression which must be evaluated. The Composite 
Design Pattern allows such construction and such 
behaviour [Gamma, 95]. Each node of this tree must 
have a unified behaviour, which takes the form of an 
evaluation. The recursive evaluation of the tree gives 
the evaluation of the fuzzy system. Another Design 
Pattern called Interpret [Gamma, 95] illustrates this 
type of solution; in fact, this pattern also involves the 
composite one. Each class of components involved in 
such a tree describes a specific type of expression 
(binary expression, unary expression, value…) and 
how to interpret or evaluate it. This kind of tree can 
also be seen as the abstract syntax tree of the fuzzy 
language. 

Aggregate : OpAggregation

and : OpAnd

then : OpThen

low : isTriangle medium : isTriangle

x : Value y : Value

low : isTriangle

w : Value

then : OpThen

high : isTriangleor : OpOr

high : isTrapeze

 

Fig. 2 Composite structure of the example 

Now, the structure of fuzzy expressions can be 
defined using involved Design Patterns. The result 
leads to the architecture depicted in figure 3. The 
different mechanisms involved are depicted, in the 
context of fuzzy expressions, as follows. 
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Fig. 3 Class diagram of a composite fuzzy expression 
architecture  

3.2 Implementation of Composite and interpret 
design patterns  

An abstract class Expression declares the interface 
for expressions for the interpreting behaviour. The 
abstract Evaluate operation that is common to all 
nodes in the abstract syntax tree (composite 
structure) is defined. 

A terminal expression illustrated in the present case 
by the Value class implements the interpret operation 
associated with the terminal symbol which is a fuzzy 
value. The evaluation of this type of expression gives 
an arithmetic value. 

Two abstract non-terminal expressions depicted by 
the UnaryExpression and BinaryExpression classes 
define behaviours for components with children. 
They store operands and implement the Evaluate 
operation for fuzzy binary expressions (and, or, then, 
aggregation operator…) and fuzzy unary expressions 
(not operator, membership functions). 

The UnaryExpression class is composed of an 
operand named operand, which is an expression. 

The BinaryExpression class is composed of two 
operands named left and right, which are expressions. 

The evaluation of instances of these classes induces 
the call of the abstract EvaluateWithOperand 
operation and provides it with the operand(s). Each 
subclass of these non-terminal expressions have to 
define the concrete behaviour in order to provide 
concrete operators or membership functions. This 
mechanism also represents a Design pattern called 
template method [Gamma, 95]. 

3.3 Template method design pattern 

This pattern allows a common use of different kinds 
of classes by delegating specific parts of the 
behaviour to subclasses. Here, the UnaryExpression 

and BinaryExpression classes are evaluated by the 
call to common Evaluate operation, but the 
behaviour is given by the specific 
EvaluateWithOPerand operation. The Evaluate 
operation provides the invariant part of the 
behaviour; it consists of the operands transfer. The 
major advantage of this mechanism is the 
segregation between the point of view of the user, 
who wishes to evaluate a fuzzy expression and that 
of the designer, who has to define the concrete 
behaviour of an operator. 

With this architecture, it is possible to build simple 
fuzzy expressions. 

4. ENHANCED FUZZY EXPRESSION 
ARCHITECTURE 

Moreover, a polymorphic behaviour can also be 
imagined in order to test the effect of different kinds 
of fuzzy operators without changing the structure of a 
system. 

4.1 Polymorphic Expressions 

To support this extension, composite classes called 
UnaryOpExpression and BinaryOpExpression are 
added so as to allow the handling of composite 
expressions as objects. These classes are expressions 
and inherit from the UnaryExpression and 
BinaryExpression classes; thus they have operands 
and can be evaluated. To complete these classes, an 
operator class member is added; so, an expression 
such as «x is "low" and y is "medium"» can be 
instantiated as an independent object where the 
expressions «x is "low"» and «y is "medium"» are the 
operands and the «and» expression is the operator. 
To obtain a polymorphic evaluation of this object the 
behaviour of the operator «and» has to be changed 
without rebuilding it. In this case, the operator has to 
appear as it changes its class. A mechanism that 
allows the behaviour of an object to be altered when 
its internal state changes must be set-up. This 
mechanism used for fuzzy expressions is depicted in 
figure 4; only the BinaryExpression class is shown, 
but the UnaryExpression class follows the same 
pattern. 
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Fig. 4 Expression and polymorphism 



 

So far, there are two kinds of expressions:  

- Simple expressions (BinaryExpression, 
UnaryExpression), where the evaluation is 
direct. They will be used as super-classes for 
fuzzy operators and membership functions. 

- Enhanced expressions (BinaryOpExpression, 
UnaryOpExpression) where the evaluation 
needs an external operator. They will be used to 
build fuzzy expressions such as «x is "low" and 
y is "medium"», where the and operator can be 
changed at any time without rebuilding this 
expression. 

To determine the polymorphic behaviour, the 
enhanced expressions do not use a real operator, but 
a Shadow operator, which provides and holds a link 
to a real operator. To perform the polymorphic 
evaluation, the shadow operator must be reconnected 
to another kind of real operator, and so, the behaviour 
of the expression changes but the structure of the 
expression remains constant. Overriding the 
EvaluateWithOperand method of the 
BinaryOpExpression specifies the evaluation of an 
enhanced expression. The evaluation process 
includes three stages (figure 4): 

- At run-time, the real operator is found by 
request, using the Self method of the shadow 
operator. 

- The operands are transferred to the real 
operator. 

- The real operator evaluates the expression. 

Figure 5 shows, before evaluation, the object 
composition of enhanced fuzzy expressions as :  

x is "low" and y is "medium" 
a is "low" and b is "medium". 

and : Shadow low : isTriangle medium : isTriangle

x : Value y : Value

and : BinaryOpExpression

and : Shadowlow : isTriangle medium : isTriangle

a : Value b : Value

and : BinaryOpExpression

and : OpAnd  

Fig. 5 Composite structure of an enhanced fuzzy 
expression. 

With such a mechanism, an operator can also be 
used by several enhanced expressions in the same 
Fuzzy Logic inference system, because the real 
operator and its operands are only determined at run 
time according to the context of the expression. 

4.2 Factoring enhanced expressions 

Enhanced fuzzy expressions improve the skills of this 
fuzzy architecture but they are not easy to 
manipulate. Indeed, the desired behaviour must be 

obtained by putting together their different parts 
(arguments, shadow operator, real operator) and 
holding a reference on the shadow operator in order 
to reconnect it to real operators. The problem can be 
solved by using a factory that will create and manage 
the enhanced fuzzy expressions and their 
components; figure 6 illustrates such a structure. In 
this diagram, two classes of factories are depicted. 
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Fig. 6 Factory and the building of enhanced 
expressions 

The ExpressionFactory class proposes: 

- The basic mechanisms to build expressions 
using two methods (NewUnary, NewBinary). 
The assembly and the naming processes are 
carried out. 

- A basic mechanism to manage the memory. All 
the expressions created by the factory are 
referenced and will be destroyed when the 
factory disappears, so a really simple expression 
garbage collector is set up. 

The FuzzyExpressionFactory class inherits from the 
ExpressionFactory class and takes account of the 
management of the components involved in the 
polymorphic behaviour described above. This class 
proposes: 

- The mechanism which builds shadow operators 
and binds them with real operators using a value 
constructor where shadow operators are 
instantiated and linked to real operators 
provided as arguments. 

- Different methods which construct fuzzy 
expressions with fuzzy semantics. The user of 
this factory merely has to request the desired 
fuzzy expression to obtain it. For example, to 
obtain a fuzzy expression and, the user has to 
use the NewAnd method and to provide the right 
operands. The method puts together the 
different parts of the enhanced expression and 
determines the right shadow operators to be 
used. 



 

- Methods for changing the behaviour of an 
operator. The ChangeOp… methods allow 
shadow operators to be reconnected to other real 
operators. So, the user can change the behaviour 
of a fuzzy system to test the influence of a 
particular fuzzy operator on it without 
modifying its structure. The user only has to 
invoke the matched ChangeOp… method of the 
factory to do so. 

With a class like FuzzyExpressionfactory the 
enhanced expressions can be created and 
manipulated as simply as basic expressions and a 
polymorphic behaviour can be managed in a really 
simple manner in every composite system of 
expressions. 

5. ILLUSTRATED EXAMPLE 

A basic Fuzzy Logic system is used to illustrate the 
nature of Fuzzy Logic inference systems. This 
example deals with the characterisation of a driving 
situation. The inputs are the speed of a passenger car 
and the experience of the driver. The output is the 
danger quotation of a situation, which shows how 
dangerous the situation is. The speed can be low, 
medium or high; the driver can be described as a 
novice, a regular or experienced driver and the 
situation can be normal, critical or dangerous. Figure 
7 illustrates several components of this fuzzy system. 
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2
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Fig. 7 Example of a Fuzzy Logic system 

This example shows that this set of mechanisms 
forms a framework and allows the building of any 
type of Fuzzy Logic inference system. All that the 
user has to do is to specialise some classes as special 
fuzzy operators or membership functions to match 
the framework to a particular case. The example 
considers the use of this framework in a Object 
Oriented Programming Language context 
(C++/Java); the framework acts so as to extend the 
idioms of the language (Coplien 1992). So, reusable 
expressions with fuzzy semantics and their 
composition rules are added to the language. 

In the next listing, all the stages of the design process 
of a Fuzzy Logic inference system are performed, as 
depicted in the sequence diagram of figure 1. 

//Design stage 
 
// operators definition 
NotMinus1 opNot; 
AndMin opAndMin; 
AndMult opAndMult; 
OrMax opOr; 
ThenMin opThen; 
CogDefuzz opDefuzz; 
 
//fuzzy expession factory 
FuzzyExpressionFactory factory ( 
&opNot,&opAndMin,&opOr,&opThen,&opOr,&opDefuzz 
); 
 
//membership functions definition 
IsTriangle high(25, 50, 75); 
IsTriangle novice(-5, 0, 5); 
IsTrapeze regular(0, 5, 15, 20); 
IsTriangle critical(2.5, 5, 7.5);  
IsTriangle dangerous(5, 10, 15); 
 
// variables definition 
Value speed, driver, situation(0, 10, 0.1); 
 
Expression *e=  
 factory.NewAgg( 
  factory.NewThen( 
   factory.NewAnd( 
    factory.NewIs(&speed,&high), 
    factory f.NewIs(&driver,&novice) 
   ), 
   factory.NewIs(&situation,dangerous) 
  ), 
  factory.NewThen( 
   factory.NewAnd( 
    factory.NewIs(&speed,&high), 
    factory.NewIs(&driver,&regular) 
   ), 
   factory.NewIs(&situation,critical) 
  ) 
 ); 
 
//defuzzification definition 
Expression *system = 
 factory.NewMamdaniDefuzz(&situation,e); 
 
//Use stage 
 
//apply inputs 
float sv,de; 
cout << “enter speed value and driver experience “; 
speed.SetValue(sv); 
driver.SetValue(de); 
//evaluation 
cout << “result situation : “ << system->Evaluate(); 
 
//change a and operator : AndMult replaces AndMin 
factory.ChangeOpAnd(&opAndMult); 
//new evaluation with the same system 
//but with an other operator and 
cout << “result situation : “ << system->Evaluate(); 
 



 

This example assumes that the concrete classes of 
fuzzy operators, such as AndMin, ThenMin based on 
the minimum of operands and the concrete classes of 
IsTriangle membership functions based on a 
triangular shape have been implemented. The 
concrete defuzzification operator named 
MamdaniOpDefuzz has also been implemented and 
performs a Mamdani defuzzification process through 
the computation of the centre of gravity of a resulting 
shape. 

The design part of the listing presents the building of 
the example (figure 7). The use part shows a first 
evaluation using the defined system, followed by a 
second evaluation where the initial AndMin operator 
is replaced by an AndMult operator. 

6. CONCLUSION 

This study has shown how object oriented concepts, 
design patterns and frameworks give solutions for the 
building of systems, which responds to a class of 
problems. Using the framework proposed, any kind 
of fuzzy system can easily be set-up. The expertise 
domain of the Fuzzy Logic field is captured in the 
framework and allows the framework to be reused by 
any user, which saves time and money. Thus, the 
design and maintenance processes are improved and 
facilitated. As the example shows, reuse does not 
mean using class libraries, but takes the form of an 
extension of idioms that the user has to manipulate. 
Thereby, the user expresses himself in his domain of 
expertise (Fuzzy Logic field) with the power of the 
programming language (in this case c++), which 
supports the framework. This framework was used in 
a project dealing with a fuzzy observer for fault 
detection (Amann 1999) based on fuzzy rules 
estimators. To extend the principle, template 
expressions were used, as they can manipulate any 

type of values. In this context, fuzzy estimators had 
to handle expressions which deal with vectors. The 
instantiation of the generic expressions specialised 
with vectors allowed the immediate reuse of the 
framework. 
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