

 A FRAMEWORK FOR ADVANCED FUZZY LOGIC INFERENCE SYSTEMS

J.M. Perronne, C. Petitjean, L. Thiry, M. Hassenforder

 ESSAIM
12, rue des frères Lumière
F-68093 Mulhouse Cedex

{ JM.Perronne, C.Petitjean, L.Thiry, M.Hassenforder }@uha.fr

Abstract: This paper describes how high-level of Object-Oriented concepts can be used
to provide a generic, portable and polymorphic Fuzzy Logic framework. It highlights the
way in which such OO concepts allow the extension of the programming language
idioms with the semantics of the fuzzy logic field. A progressive approach presents; in a
first step Fuzzy Logic systems; then, relevant classes, design patterns and architectures
are identified. The considered aspects cover the composite structure, the polymorphic
behaviour and the building of a system of fuzzy expressions. Finally, an example
illustrates how the framework can be used in a conventional design strategy. Copyright
© 2001 IFAC.

Keywords: Fuzzy systems, Object modelling techniques, Software engineering,
Computer-aided system design

1. INTRODUCTION

The aim of this paper is to design portable fuzzy
logic inference systems. It will be expressed using
the syntax of the underliyng programming language
with the fuzzy semantics. The portability of the fuzzy
logic inference systems will be assumed by the
programming language. Moving the designed system
from the design computer to the final target (in-line),
just needs a compiling stage with the final target
compiler. So, the expertise domain of the Fuzzy
Logic (variables, membership functions, operators,
rules, ...) field have to be captured and have to take
the form of an extension of idioms that the user has
to manipulate. Moreover, the fuzzy system has to be
flexible and have to provide polymorphic operators.
They allow the studying of the impact of any kind of
operators without redesining tasks.

When a fuzzy inference system has to be designed,
the only target of the designer is to set up the right
fuzzy subsystem in order to master his problem. The
task of writing software in this scope must not be an
obstacle in the design process. It would be
convenient if the designer had tools that took charge
of the software complexity and responded to his
problems. To create such tools, Object Oriented
paradigms - among which Design patterns and
software frameworks - can be exploited as valid
modelling and implementation techniques in
advanced control engineering (Maffezoni 1999).
Design patterns are a generic solution to recurring

problems which makes it easier to reuse successful
designs and architectures. Software frameworks are
semi-complete applications, which can be defined as
reusable designs for an entire application or for part
of an application (Fayad, 1999); they automate the
generation of classes of an application. A Fuzzy
Logic Framework involving several Design Patterns
is presented here; it allows the building of Fuzzy
Logic applications using the sole specifications
required by a specific Fuzzy Logic system. UML
diagrams (Muller, 1997) will be used to describe the
study of the framework and design patterns.

2. PROBLEM ANALYSIS

A general fuzzy system must be analysed; pertinent
objects and classes of the right granularity must be
found and described with the appropriate vocabulary
(Booch 94). From these considerations, a framework,
which uses the elements discovered must be
developed in order to make the designer’s task easier.

Fuzzy Logic allows mapping from a given input to an
output. This is illustrated by the following general
fuzzy system:

If x is "low" and y is "medium" then w is "low"
If x is "low" or y is "high" then w is "high"

This involves components such as variables,
membership functions, Fuzzy Logic operators (and,
or ...) and “if-then” rules (Zadeh 73). There are two
types of fuzzy inference systems, the Mamdani and

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

the Sugeno types; their description can be found in
the references (Mamdani 75) and (Sugeno 85). The
major differences between these two methods
concern the implication part of a fuzzy rule and the
way in which a fuzzy inference system is defuzzified.

The building of any type of Fuzzy Logic inference
system needs the use of classical or particular
operators and membership functions suited to a
specific system. In the case of particular operators
and membership functions the user must be able to
define them easily.

At present, any kind of static Fuzzy Logic inference
systems can be developed. However, if different
types of fuzzy operators must be tested to determine
the best structure of the fuzzy system, a user usually
must rebuild a new fuzzy system. This process is
time and money consuming and does not lead to an
optimised design process. So, in an advanced fuzzy
framework, a user must be able to change the nature
of the operators without creating a new system at any
time.

To summerise what a designer has to do – i.e. to
design and use a fuzzy subsystem - the different
stages involved in such a process have to be
identified. The use-case and sequence diagrams
presented in figure 1 show, successively, the
designer’s requirements and interactions between the
designer and the framework during design and use
processes.

 designer : Specialist in fuzzy logic
Fuzzy

Framework
Operators definition

Membership functions definition

Variables creation

Fuzzy rules description

Loop

End Loop

Evaluate fuzzy expressions

[if necessary] change the class of operator(s)

Set input values

Use Case Diagram

Sequence Diagram

Design

Specialist in fuzzy logic

Fuzzy Framework Actor: person who
interacts with the system

Use case
Message

Use

Design stage

Use stage

Fig. 1 Use-case and sequence diagram of the building
and use of a Fuzzy Logic inference system

3. SIMPLE FUZZY EXPRESSION
ARCHITECTURE

Fuzzy rules suggest that a Fuzzy Logic system can be
expressed as a collection of expressions. So, fuzzy
operators and values look like operators and values in
arithmetic expressions. In the above fuzzy rule
system example, the different parts of the expressions
are:

- Variables: x, y, w.
- Membership functions: "low", "medium",

"high".
- Fuzzy Operators: and (T-norm operator), or (T-

conorm operator), then (implication operator),
aggregation.

3.1 Composite facet of the architecture

In fact, each component (variables, membership
functions, operators) can be considered as an
expression which can be evaluated. This implies that
there is a hierarchy of expressions, which leads to a
composite structure. The behaviour of this structure
will be obtained by the evaluation of the composite
expressions.

The architecture of a fuzzy system distributes the
different components into a hierarchical tree
structure. Figure 2 illustrates the composite
hierarchical structure of the fuzzy example given
above. Moreover, each element has to be treated
uniformly, whatever its nature; each element is an
expression which must be evaluated. The Composite
Design Pattern allows such construction and such
behaviour [Gamma, 95]. Each node of this tree must
have a unified behaviour, which takes the form of an
evaluation. The recursive evaluation of the tree gives
the evaluation of the fuzzy system. Another Design
Pattern called Interpret [Gamma, 95] illustrates this
type of solution; in fact, this pattern also involves the
composite one. Each class of components involved in
such a tree describes a specific type of expression
(binary expression, unary expression, value…) and
how to interpret or evaluate it. This kind of tree can
also be seen as the abstract syntax tree of the fuzzy
language.

Aggregate : OpAggregation

and : OpAnd

then : OpThen

low : isTriangle medium : isTriangle

x : Value y : Value

low : isTriangle

w : Value

then : OpThen

high : isTriangleor : OpOr

high : isTrapeze

Fig. 2 Composite structure of the example

Now, the structure of fuzzy expressions can be
defined using involved Design Patterns. The result
leads to the architecture depicted in figure 3. The
different mechanisms involved are depicted, in the
context of fuzzy expressions, as follows.

+ Evaluate()

Expression

+ Evaluate()
+ SetValue()

Value

+ Evaluate()
EvaluateWithOperand()

BinaryExpression

1

Left, right

+ Evaluate()
EvaluateWithOperand()

UnaryExpression

operand

EvaluateWithOperand()

OpThenMin

EvaluateWithOperand()

OpOrMax

EvaluateWithOperand()

IsTriangle

EvaluateWithOperand()

IsGaussian

return EvaluateWithOperand(operand);

inheritance
aggregation
reference

+ public
protected
- private
* zero or more

2

......

return EvaluateWithOperand(left, right);

Fig. 3 Class diagram of a composite fuzzy expression
architecture

3.2 Implementation of Composite and interpret
design patterns

An abstract class Expression declares the interface
for expressions for the interpreting behaviour. The
abstract Evaluate operation that is common to all
nodes in the abstract syntax tree (composite
structure) is defined.

A terminal expression illustrated in the present case
by the Value class implements the interpret operation
associated with the terminal symbol which is a fuzzy
value. The evaluation of this type of expression gives
an arithmetic value.

Two abstract non-terminal expressions depicted by
the UnaryExpression and BinaryExpression classes
define behaviours for components with children.
They store operands and implement the Evaluate
operation for fuzzy binary expressions (and, or, then,
aggregation operator…) and fuzzy unary expressions
(not operator, membership functions).

The UnaryExpression class is composed of an
operand named operand, which is an expression.

The BinaryExpression class is composed of two
operands named left and right, which are expressions.

The evaluation of instances of these classes induces
the call of the abstract EvaluateWithOperand
operation and provides it with the operand(s). Each
subclass of these non-terminal expressions have to
define the concrete behaviour in order to provide
concrete operators or membership functions. This
mechanism also represents a Design pattern called
template method [Gamma, 95].

3.3 Template method design pattern

This pattern allows a common use of different kinds
of classes by delegating specific parts of the
behaviour to subclasses. Here, the UnaryExpression

and BinaryExpression classes are evaluated by the
call to common Evaluate operation, but the
behaviour is given by the specific
EvaluateWithOPerand operation. The Evaluate
operation provides the invariant part of the
behaviour; it consists of the operands transfer. The
major advantage of this mechanism is the
segregation between the point of view of the user,
who wishes to evaluate a fuzzy expression and that
of the designer, who has to define the concrete
behaviour of an operator.

With this architecture, it is possible to build simple
fuzzy expressions.

4. ENHANCED FUZZY EXPRESSION
ARCHITECTURE

Moreover, a polymorphic behaviour can also be
imagined in order to test the effect of different kinds
of fuzzy operators without changing the structure of a
system.

4.1 Polymorphic Expressions

To support this extension, composite classes called
UnaryOpExpression and BinaryOpExpression are
added so as to allow the handling of composite
expressions as objects. These classes are expressions
and inherit from the UnaryExpression and
BinaryExpression classes; thus they have operands
and can be evaluated. To complete these classes, an
operator class member is added; so, an expression
such as «x is "low" and y is "medium"» can be
instantiated as an independent object where the
expressions «x is "low"» and «y is "medium"» are the
operands and the «and» expression is the operator.
To obtain a polymorphic evaluation of this object the
behaviour of the operator «and» has to be changed
without rebuilding it. In this case, the operator has to
appear as it changes its class. A mechanism that
allows the behaviour of an object to be altered when
its internal state changes must be set-up. This
mechanism used for fuzzy expressions is depicted in
figure 4; only the BinaryExpression class is shown,
but the UnaryExpression class follows the same
pattern.

+ Evaluate()
EvaluateWithOperand()

BinaryExpression

return self ;

operator

EvaluateWithOperand()

BinaryOpExpression

+ Self()
+ Change()

Shadow

self

BinaryExpression *realOp = operator->Self();
realOp->SetOperand1(op1);
realOp->SetOperand2(op2);
return realOp->Evaluate();

Left, right

return this ; inheritance
aggregation
reference

+ public
protected
- private
* zero or more2

1

+ Self()
+ Evaluate()

Expression

Fig. 4 Expression and polymorphism

So far, there are two kinds of expressions:

- Simple expressions (BinaryExpression,
UnaryExpression), where the evaluation is
direct. They will be used as super-classes for
fuzzy operators and membership functions.

- Enhanced expressions (BinaryOpExpression,
UnaryOpExpression) where the evaluation
needs an external operator. They will be used to
build fuzzy expressions such as «x is "low" and
y is "medium"», where the and operator can be
changed at any time without rebuilding this
expression.

To determine the polymorphic behaviour, the
enhanced expressions do not use a real operator, but
a Shadow operator, which provides and holds a link
to a real operator. To perform the polymorphic
evaluation, the shadow operator must be reconnected
to another kind of real operator, and so, the behaviour
of the expression changes but the structure of the
expression remains constant. Overriding the
EvaluateWithOperand method of the
BinaryOpExpression specifies the evaluation of an
enhanced expression. The evaluation process
includes three stages (figure 4):

- At run-time, the real operator is found by
request, using the Self method of the shadow
operator.

- The operands are transferred to the real
operator.

- The real operator evaluates the expression.

Figure 5 shows, before evaluation, the object
composition of enhanced fuzzy expressions as :

x is "low" and y is "medium"
a is "low" and b is "medium".

and : Shadow low : isTriangle medium : isTriangle

x : Value y : Value

and : BinaryOpExpression

and : Shadowlow : isTriangle medium : isTriangle

a : Value b : Value

and : BinaryOpExpression

and : OpAnd

Fig. 5 Composite structure of an enhanced fuzzy
expression.

With such a mechanism, an operator can also be
used by several enhanced expressions in the same
Fuzzy Logic inference system, because the real
operator and its operands are only determined at run
time according to the context of the expression.

4.2 Factoring enhanced expressions

Enhanced fuzzy expressions improve the skills of this
fuzzy architecture but they are not easy to
manipulate. Indeed, the desired behaviour must be

obtained by putting together their different parts
(arguments, shadow operator, real operator) and
holding a reference on the shadow operator in order
to reconnect it to real operators. The problem can be
solved by using a factory that will create and manage
the enhanced fuzzy expressions and their
components; figure 6 illustrates such a structure. In
this diagram, two classes of factories are depicted.

NewUnary()
NewBinary()
- Hold()

ExpressionFactory

1 *

references

+ FuzzyExpressionFactory ()
+ NewNot()
+ NewAnd()
+ NewOr()
+ NewThen()
+ NewAgg()
+ NewMandaniDefuzz()
+ NewSugenoDefuzz()
+ NewIs()

+ ChangeOpNot()
+ ChangeOpAnd()
+ ChangeOpOr()
+ ChangeOpThen()
+ ChangeOpAgg()
+ChangeOpMandaniDefuzz()
+ ChangeOpSugenoDefuzz()

FuzzyExpressionFactory
OpNot, opAnd, …, opSugenoDefuzz

1

9

+ Self()
+ Change()

Shadow

inheritance
aggregation
reference

+ public
protected
- private
* zero or more

self

+ Self()
+ Evaluate()

Expression

opNot(Shadow(oNot)),
opAnd(Shadow(oAnd)),

opSugenoDefuzz(Shadow(oSDefuzz))

return NewUnary("not", operand, (UnaryExpression *) opNot);

 OpAgg->Change(o);

Fig. 6 Factory and the building of enhanced
expressions

The ExpressionFactory class proposes:

- The basic mechanisms to build expressions
using two methods (NewUnary, NewBinary).
The assembly and the naming processes are
carried out.

- A basic mechanism to manage the memory. All
the expressions created by the factory are
referenced and will be destroyed when the
factory disappears, so a really simple expression
garbage collector is set up.

The FuzzyExpressionFactory class inherits from the
ExpressionFactory class and takes account of the
management of the components involved in the
polymorphic behaviour described above. This class
proposes:

- The mechanism which builds shadow operators
and binds them with real operators using a value
constructor where shadow operators are
instantiated and linked to real operators
provided as arguments.

- Different methods which construct fuzzy
expressions with fuzzy semantics. The user of
this factory merely has to request the desired
fuzzy expression to obtain it. For example, to
obtain a fuzzy expression and, the user has to
use the NewAnd method and to provide the right
operands. The method puts together the
different parts of the enhanced expression and
determines the right shadow operators to be
used.

- Methods for changing the behaviour of an
operator. The ChangeOp… methods allow
shadow operators to be reconnected to other real
operators. So, the user can change the behaviour
of a fuzzy system to test the influence of a
particular fuzzy operator on it without
modifying its structure. The user only has to
invoke the matched ChangeOp… method of the
factory to do so.

With a class like FuzzyExpressionfactory the
enhanced expressions can be created and
manipulated as simply as basic expressions and a
polymorphic behaviour can be managed in a really
simple manner in every composite system of
expressions.

5. ILLUSTRATED EXAMPLE

A basic Fuzzy Logic system is used to illustrate the
nature of Fuzzy Logic inference systems. This
example deals with the characterisation of a driving
situation. The inputs are the speed of a passenger car
and the experience of the driver. The output is the
danger quotation of a situation, which shows how
dangerous the situation is. The speed can be low,
medium or high; the driver can be described as a
novice, a regular or experienced driver and the
situation can be normal, critical or dangerous. Figure
7 illustrates several components of this fuzzy system.

speed (m/s) driver experience (years) note of the situation

usual

If speed is high and driver is regular then situation is critical

critical

2

result

If speed is high and driver is novice then situation is dangerous

high dangerousnovice

12.5 25 37.5 50
0

0.5

1
low highmedium

0 0 5 10 15 20

novice experienced

regular

0

0.5

1

0 2.5 5 7.5 10

normal dangerous

critical

0

0.5

1

38

high

aggregation

result

Fig. 7 Example of a Fuzzy Logic system

This example shows that this set of mechanisms
forms a framework and allows the building of any
type of Fuzzy Logic inference system. All that the
user has to do is to specialise some classes as special
fuzzy operators or membership functions to match
the framework to a particular case. The example
considers the use of this framework in a Object
Oriented Programming Language context
(C++/Java); the framework acts so as to extend the
idioms of the language (Coplien 1992). So, reusable
expressions with fuzzy semantics and their
composition rules are added to the language.

In the next listing, all the stages of the design process
of a Fuzzy Logic inference system are performed, as
depicted in the sequence diagram of figure 1.

//Design stage

// operators definition
NotMinus1 opNot;
AndMin opAndMin;
AndMult opAndMult;
OrMax opOr;
ThenMin opThen;
CogDefuzz opDefuzz;

//fuzzy expession factory
FuzzyExpressionFactory factory (
&opNot,&opAndMin,&opOr,&opThen,&opOr,&opDefuzz
);

//membership functions definition
IsTriangle high(25, 50, 75);
IsTriangle novice(-5, 0, 5);
IsTrapeze regular(0, 5, 15, 20);
IsTriangle critical(2.5, 5, 7.5);
IsTriangle dangerous(5, 10, 15);

// variables definition
Value speed, driver, situation(0, 10, 0.1);

Expression *e=
 factory.NewAgg(
 factory.NewThen(
 factory.NewAnd(
 factory.NewIs(&speed,&high),
 factory f.NewIs(&driver,&novice)
),
 factory.NewIs(&situation,dangerous)
),
 factory.NewThen(
 factory.NewAnd(
 factory.NewIs(&speed,&high),
 factory.NewIs(&driver,®ular)
),
 factory.NewIs(&situation,critical)
)
);

//defuzzification definition
Expression *system =
 factory.NewMamdaniDefuzz(&situation,e);

//Use stage

//apply inputs
float sv,de;
cout << “enter speed value and driver experience “;
speed.SetValue(sv);
driver.SetValue(de);
//evaluation
cout << “result situation : “ << system->Evaluate();

//change a and operator : AndMult replaces AndMin
factory.ChangeOpAnd(&opAndMult);
//new evaluation with the same system
//but with an other operator and
cout << “result situation : “ << system->Evaluate();

This example assumes that the concrete classes of
fuzzy operators, such as AndMin, ThenMin based on
the minimum of operands and the concrete classes of
IsTriangle membership functions based on a
triangular shape have been implemented. The
concrete defuzzification operator named
MamdaniOpDefuzz has also been implemented and
performs a Mamdani defuzzification process through
the computation of the centre of gravity of a resulting
shape.

The design part of the listing presents the building of
the example (figure 7). The use part shows a first
evaluation using the defined system, followed by a
second evaluation where the initial AndMin operator
is replaced by an AndMult operator.

6. CONCLUSION

This study has shown how object oriented concepts,
design patterns and frameworks give solutions for the
building of systems, which responds to a class of
problems. Using the framework proposed, any kind
of fuzzy system can easily be set-up. The expertise
domain of the Fuzzy Logic field is captured in the
framework and allows the framework to be reused by
any user, which saves time and money. Thus, the
design and maintenance processes are improved and
facilitated. As the example shows, reuse does not
mean using class libraries, but takes the form of an
extension of idioms that the user has to manipulate.
Thereby, the user expresses himself in his domain of
expertise (Fuzzy Logic field) with the power of the
programming language (in this case c++), which
supports the framework. This framework was used in
a project dealing with a fuzzy observer for fault
detection (Amann 1999) based on fuzzy rules
estimators. To extend the principle, template
expressions were used, as they can manipulate any

type of values. In this context, fuzzy estimators had
to handle expressions which deal with vectors. The
instantiation of the generic expressions specialised
with vectors allowed the immediate reuse of the
framework.

7. REFERENCES

Amann, P., Perronne J.M., Gissinger G.L., Frank
P.M (1999). Identification Of Fuzzy Relational
Models for Fault Detection. 14 th World
Congress of IFAC Beijing 99, Vol K, pp309-314.

Booch G. (1994). Object-Oriented Analysis and
design with applications, 2nd edition, Addison-
Wesley.

Fayad M.E. et al. (1999). Building application
frameworks: object-oriented foundation of
framework design, Wiley and Sons Inc

Coplien J.O (1992). Advanced C++ programming
styles and idioms, reading Massachussets.
Addison-Wesley.

Gamma, E.Gamma et al (1995). Design patterns,
elements of reusable O.O. software. Addison-
Wesley

Maffezzoni C. et al. (1999). Object-Oriented models
for advanced automation engineering. Control
Engineering Practice 7, pp 957-968.

Mamdani, EH and S. Assilian (1975). An experiment
in linguistic synthesis with Fuzzy Logic
controller. International Journal of Man-Machine
Studies, Vol 7, No 1, 1-13.

Muller, P.A. (1997). Instant UML, Wrox Press.
Sugeno, M. (1985). Industrial application of fuzzy

control. Elsevier Science Pub. Co.
Zadeh, L.A (1973), Outline of new approach to the

analysis of complex systems and decision
processes, IEEE Transactions on Systems, Man,
and Cybernetics, Vol. 3, No. 1, 28-44

