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Abstract: In this paper a comparison between a linear-model-based and a bilinear-model-
based identification and predictive control methodology is presented. Input-output data
from a nonlinear first-principles simulation model of the free-radical polymerization of
methylmethacrylate are used for black-box identification of a linear and a bilinear model.
These black-box models are used within a model-based predictive controller that controls the
nonlinear white-box simulation model. The results demonstrate a better performance of the
bilinear-model-based methodology compared to the linear-model-based methodology.
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1. INTRODUCTION

For many processes linear models can approximate ac-
curately the process behavior about a single setpoint,
i.e. in a narrow operating region. However, an increas-
ing demand for flexibility of many processes requires
that these processes are operated over larger operating
regions. Due to the intrinsic nonlinearity of almost
all processes, often linear models cannot approximate
accurately the process behavior over these larger op-
erating regions. In such cases nonlinear models are
required for accurate approximate modeling.

In this paper the potential of a bilinear-model-based
approach is demonstrated. The “real” process con-
sidered in this paper is a continuous-time white-box
simulation model of the free-radical polymerization
of methylmethacrylate (Schmidt and Ray, 1981), and
is presented in detail in section 2. Note that this is a

“general” nonlinear model (neither linear nor bilin-
ear). From data obtained from an identification ex-
periment both a linear and a bilinear model are com-
puted. The identification algorithms are briefly de-
scribed in section 3. These models are used within
a model-based predictive control (MPC) framework
based on the quasi-infinite horizon paradigm (Chen
and Allgöwer, 1998). The details of the MPC algo-
rithms are presented in section 4. In section 5 the
identification and control results are presented both
for the linear model and the bilinear model. Finally,
a discussion is presented in section 6.

2. THE PROCESS

The process under consideration is a nonlinear white-
box simulation model of the free-radical polymer-
ization of methylmethacrylate in a constant volume
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continuous stirred tank reactor. The model equations
of this simulation model are given by (Schmidt and
Ray, 1981):
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where qf and q are the inlet and outlet flow rate respec-
tively, V is the reactor volume; If , Mf and Sf denote
the initiator, monomer and solvent concentrations in
the feed, respectively; I ,M and S denote the initiator,
monomer and solvent concentrations in the reactor, re-
spectively; Tf , T and Tc denote the temperature of the
feed, the reactor and the cooling jacket, respectively;
∆Hp is the reaction enthalpy; ρ andCp are the density
and heat capacity of the reactor contents, respectively;
h is the heat transfer coefficient to the reactor; Ac is
the heat transfer area of the reactor; P is the total
concentration of growing free radicals in the reactor,
given by:

P =

(
2f · kd · I

kt

) 1
2

, (5)

where f is the initiator efficiency. Due to the increase
in density as a result from the conversion of monomer
to polymer, the outlet flow rate differs from the inlet
flow rate and is given by:

q = qf (1 + εpxp), (6)

where

εp =M ·Wm

(
1

ρp
− 1

ρm

)
(7)

xp =
φpρp

φpρp +Wm ·M
. (8)

Wm is the molecular weight of monomer, ρp and ρm
are the densities of polymer and monomer, respec-
tively; φp is the volume fraction of polymer. For the
reaction rates the following holds:

kd = 1.69 · 1014 exp

(−30000

R · T

)
(9)

kp = kp0 · gp (10)

kt = kt0 · gt (11)

where R is the gas constant,

kp0 = 4.92 · 105 exp

(−4353

R · T

)
(12)

kt0 = 9.8 · 107 exp

(−701

R · T

)
, (13)

and the functions gp and gt, which are due to the “gel
effect”, are given by:

gp =

{
1, Vf > 0.05
7.1 · 10−5 exp(171.53 · Vf ), Vf ≤ 0.05

gt =



0.10575 · exp(17.15 · Vf − 0.01715(T − 273.2))
Vf > (0.1856− 2.965 · 10−4(T − 273.2))

2.3 · 10−6 · exp(75Vf )
Vf ≤ (0.1856− 2.965 · 10−4(T − 273.2))

,

where the total free volume Vf is given by (Kurtz et
al., 2000):

Vf = max[Vfpφp + Vfmφm + Vfsφs , 0], (14)

where φp, φm, φs are the volume fractions of polymer,
monomer and solvent in the mixture, calculated from:

φm =
Wm ·M
ρm

(15)

φs =
Ws · S
ρs

(16)

φp =
ρ− φmρm − φsρs

ρp
, (17)

under the assumption that the volume fraction of ini-
tiator is approximately zero.Ws and ρs are the molec-
ular weight and the density of the solvent respectively.
Vfp, Vfm and Vfs are given by:

Vfm = 0.025 + 0.001(T − 167) (18)

Vfp = 0.025 + 0.00048(T − 387) (19)

Vfs = 0.025 + 0.001(T − 181). (20)

In this paper the manipulable input is chosen to be the
monomer concentration in the feed (which affects the
solvent concentration in the feed), and the output is
chosen to be the monomer concentration in the reactor.
The values of the remaining model parameters are
listed in table 1.

3. IDENTIFICATION

The bilinear model that is to be identified has the
structure:

x(k + 1) =Ax(k)

+ (B + [F1x(k), . . . , Fmx(k)])u(k) (21)

y(k) =Cx(k), (22)

where x ∈ � n is the state, u ∈ � m is the
input, and y ∈ � p is the output. The matrices



Table 1. Parameter values of the white-box
polymerization model

parameter value unit source
R 1.987 cal/(K ·mole)
f 0.5 1,2,3
Cp 0.4 cal/(g · K) 1,2
ρ 1038 g/L 1,2
ρs 901 g/L 2
ρm 939 g/L 2
ρp 1200 g/L 2
h 135.6 cal/(m2 · s · K) 1
Ac 2.8 m2 1
−∆Hp 13.8 · 103 cal/mole 1
Ws 88.10 g/mole 2
Wm 100.11 g/mole 2,3
qf 0.2813 L/s 2
V 900 L 2
If 0.02 mole/L
Tf 298 K 3
Tc 350 K
1. (Adebekun and Schork, 1989)
2. (Kurtz et al., 2000)
3. (Schmidt and Ray, 1981)

A,B,C, F1, . . . , Fm are state-space matrices of con-
formal dimensions. For the process under considera-
tion m = p = 1. The linear model has a structure
similar to that of (21)–(22), but then F1, . . . , Fm are
equal to zero.

The linear model is identified with the PO-MOESP
subspace method (Verhaegen, 1994).

The bilinear model is obtained by a two step proce-
dure. First, a bilinear subspace identification method
is used to obtain an initial estimate of the system.
Second, a nonlinear optimization-based approach is
used to improve this initial estimate.

The key point in subspace identification for bilinear
systems is the reconstruction of the state sequence.
Once an estimate of the state sequence is available the
system matrices follow by solving two least squares
problems based on (21)–(22); the system matrices are
estimated as

[Â, B̂, F̂1, . . . , F̂m] = X̂2,N+1ΦT1,N
(
Φ1,NΦT1,N

)−1

Ĉ = Y1,NΦT1,N
(
Φ1,NΦT1,N

)−1
,

where

X̂1,N =
[
x̂(1) x̂(2) · · · x̂(N)

]
,

is the state estimate obtained from the bilinear sub-
space method, and

Φ1,N :=




X̂1,N

U1,N

U1,N � X̂1,N


 , (23)

with U1,N and Y1,N defined similar to X̂1,N . The
symbol � is used to denote the Khatri-Rao product,
which is a column-wise Kronecker product for two
matrices with an equal number of columns. Let M ∈

� p×q and N ∈ � r×q be two arbitrary matrices, then
the Khatri-Rao product of these matrices equals:

M �N =
[
m1 ⊗ n1 m2 ⊗ n2 . . . mq ⊗ nq

]
,

where ⊗ denotes the Kronecker product, and mi and
ni (i = 1, 2, . . . , q) denote the columns of the matri-
ces M and N , respectively.

The bilinear subspace identification method that is
used in this paper, was described in detail by (Favoreel,
1999). It can also be obtained as a special case of the
subspace identification method for linear parameter-
varying (LPV) systems presented by (Verdult and Ver-
haegen, 2000). The bilinear system can be viewed as
an LPV system with an ‘A’ matrix that depends in an
affine way on a time-varying parameter, which equals
the input.

First, the available measurements of uk and yk are
stored in some structured matrices, which are defined
as

Uk := [u(k), u(k + 1), . . . , u(k +N − 1)]

Yk := [y(k), y(k + 1), . . . , y(k +N − 1)]

Yj|j :=

[
Yj

Pj � Yj

]
, Yk+j|j :=




Yk+j

Yk+j−1|j
Uk+j � Yk+j−1|j




Yj|j := Yj , Yk+j|j :=

[
Yk+j

Yk+j−1|j

]

The matrix Uk+j|j similar to Yk+j|j .

The next step is to perform the following QR factor-
ization:

Wj,0

Zs,j,0
Yk+j|j


 =



R11 0 0
R21 R22 0
R31 R32 R33





Q1

Q2

Q3


 , (24)

with

Wj,0 :=

[
Uj−1|0
Yj−1|0

]
, Zs,j,0 :=




Us+j
Us+j−1|j

Us+j−1|j �Wj,0


 .

It can be shown that

ΓsXj ≈ R( : , 1: nw)Wj,0, (25)

where

Γs :=




CAs0
...

CA0

C


 , R := [R31, R32]

[
R11 0
R21 R22

]−1

,

and nw is the total number of rows in Wj,0.

The final step is to recover the state sequence. Based
on equation (25) the state sequence can be recovered
up to an unknown similarity transformation from a
singular value decomposition (SVD) of the matrix
R( : , 1: nw)Wj,0. Let this SVD be given by

R( : , 1: nw)Wj,0 =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V T1
V T2

]
,

with Σ1 ∈
� n×n , then the state sequence can be

estimated as X̂j = Σ
1/2
1 V T1 , provided that s ≥ n− 1



and j ≥ n. If the noise is not excessive, the singular
values contained in Σ1 will be much larger than the
ones in Σ2; and the order n of the system can be
determined from this singular value decomposition.

A major problem with the subspace method described
above is the fact that the number of rows in the data
matricesWj,0 andZs,j,0 grows exponentially with the
block sizes j and s. Since the block sizes have to
satisfy s ≥ n−1 and j ≥ n, already for relatively low
order systems (small values for n) the number of rows
in the data matrices can be too large to be handled on
the average computer. To solve this problem, (Verdult
and Verhaegen, 2000) described a method to reduce
the dimensions of the data matrices. This method is
basically a subset selection method based on a QR
factorization that selects only the most dominant rows
from the matricesWj,0 and Zs,j,0, and uses only these
rows to compute the QR factorization (24). Since only
the most dominant rows are used, an approximation
error is introduced.

The bilinear model obtained from the subspace iden-
tification step is improved by using a nonlinear
optimization-based method that minimizes the output
error. Since the bilinear system can be regarded as a
special case of an LPV system, the iterative LPV iden-
tification method proposed by (Lee and Poolla, 1999)
can be used. This method uses a full parameterization
of the system matrices. The resulting non-uniqueness
of the state-space representation is dealt with by deter-
mining at each iteration the directions that do change
the value of the cost function and only updating the
parameters along these directions. This leads to nu-
merical advantages: no special parameterization of the
bilinear system is needed, the active parameters are
determined from the data.

4. PREDICTIVE CONTROL

Suppose that the desired setpoint is the origin. Then
the performance index to be minimized is given by
(notation: ||b||2Ψ = bTΨb):

J(k) =

Hs∑

i=1

{||y(k + i)||2Qy + ||u(k + i− 1)||2Ru}

+||x(k +Hs)||2Px , (26)

where Qy and Ru are positive-definite weighting ma-
trices, and Px is a positive-definite weighting matrix
such that ||x(k + Hs)||2Px is an upper bound for the
summation of the first two terms in (26) for i = Hs +
1, . . . ,∞, under the restriction that x(k + Hs) be-
longs to a target set (defined by an end-point inequal-
ity constraint) which is invariant under the model in
closed loop with a feedback law. This corresponds to
the so-called quasi-infinite-horizon paradigm (Chen
and Allgöwer, 1998). For linear and bilinear models
of which A has eigenvalues strictly within the unit

disc, and in the presence of only input constraints,
the above-mentioned feedback law is trivially given
by u = 0 and the target set corresponds to the entire
state space. Then Px is given by the solution to the
following Lyapunov equation:

Px −ATPxA = ATCTQyCA. (27)

Since in this paper the models (linear and bilinear) are
obtained via an open-loop identification experiment,
the plant can only be operated in a stable operating
region. Therefore it is plausible that the identified
models have A matrices of which the eigenvalues are
strictly within the unit disc.

If the desired setpoint does not correspond to the
origin, the model can be shifted such that the origin of
the shifted model corresponds to the desired setpoint
of the original model, and one may proceed as above
for the shifted model. If the model is linear, then the
dynamics of the shifted model are equivalent to that
of the original model (i.e. then shifting only affects
an off-set term in the input, state and output). If the
model is nonlinear the model equations are affected
as well. Suppose the desired setpoint for a bilinear
model is specified by u = uss, x = xss, y = yss.
This corresponds to the origin of the shifted model
in deviation variables ū = u − uss, x̄ = x − xss,
ȳ = y − yss, where the shifted model is given by:

x̄(k + 1) = Āx̄(k)

+
(
B̄ + [F1x̄(k), . . . , Fmx̄(k)]

)
ū(k) (28)

ȳ(k) =Cx̄(k), (29)

where

Ā = A+
m∑

j=1

Fjuss,j (30)

B̄ = B + [F1xss, . . . , Fmxss] ; (31)

i.e. shifting of the bilinear model affects the matrices
A and B of the shifted model.

The minimization of (26) may be subject to input,
state and output constraints. In this paper the input
(provided by the controller) is constrained to lie within
the range that is used for the identification experiment,
in order to operate the process in the region in which
it has been identified. Thus the minimization of (26) is
subject to the constraints:

umin ≤ u(k + i− 1) ≤ umax (32)

∀i = 1, . . . , Hs,

where for a feasible setpoint u = 0 must be feasible.
For the derivation of Px, equation (27), the inputs
beyond time instant k + Hs are assumed to be zero.
In this way the input constraints are satisfied over the
quasi-infinite horizon if (32) is satisfied over the finite
horizon from k till k + Hs − 1. For linear models



the problem of minimizing (26) subject to (32) is
convex and can be solved by quadratic programming;
for bilinear models this minimization problem is non-
convex. Algorithms for solving these bilinear MPC
problems can be found in (Bloemen et al., 2001).

In order to obtain a good controller performance the
identified model, which is used within the controller,
should be able to approximate accurately the behavior
of the process (in this paper the white-box simulation
model). However, in practice some degree of model
mismatch is unavoidable (this could also arise on
account of disturbances for example). In this paper the
controller copes with model mismatch by adding the
modeling error

e(k) = yp(k)− y(k), (33)

to the predictions of the model

y(k + i) = Cx(k + i) + e(k), i ≥ 1, (34)

where in (33) yp is the output of the controlled process
(Henson, 1998). Given a desired setpoint yss, a certain
e(k) will affect the setpoints uss and xss. Again, the
shifted model for this setpoint can be represented as
(28)–(29). The feedback path (33)–(34) enables one
to eliminate steady state off-set.

5. RESULTS

For the identification experiment, the volume fraction
of monomer in the feed was varied between 0.5 and
0.9. The input signal was specified by a pseudo-
random multi-level signal with a minimum switching
time of 5 samples, a maximum switching time of 40
samples, an average switching time of 15 samples, and
a sampling time of two minutes. The continuous-time
white-box polymerization model was simulated with
this input signal. No measurement noise was added in
order to focus on the differences between the linear-
and the bilinear-model-based approach caused by the
nonlinearity of the white-box simulation model (the
modeling error can be regarded as process noise and is
handled through (33)–(34) by the controller). Output
data were collected over a period of 1500 samples
with a sampling time of two minutes. The first 1000
data points were used for identification, the last 500
data points were used for validation, both for a linear
model and for a bilinear model. The block size used
in the linear subspace method was 5. The block sizes
used in the bilinear subspace method were s = j −
1 = 4. With this choice, the matrix Wj,0 contains 60
rows, and the matrix Zk,j,0 contains 436 rows. Subset
regression was used to select the 12 most dominant
rows from Wj,0 and the 33 most dominant rows from
the Zk,j,0.

Based on the singular values of the subspace iden-
tification algorithms for the linear and the bilinear

models, the orders of both the linear model and the
bilinear model were selected to be 3.

To measure the performance of the estimated models
the variance accounted for (VAF) was used, The VAF
is defined as

VAF = max



1−

var
(
yp(k)− y(k)

)

var
(
yp(k)

) , 0



× 100%,

where yp(k) denotes the real output (polymerization
process), and y(k) denotes the output of the black-
box model, and var(·) denotes the variance of a quasi-
stationary signal. The VAF indices for the linear model
were 94% and 92% for the identification data and val-
idation data, respectively. The VAF indices for the bi-
linear model were 99% and 96% for the identification
data and validation data, respectively. This indicates
that the approximating ability of the bilinear model is
better than that of the linear model for this example.

The tuning parameters of both the linear-model-based
predictive controller (LMPC) and the bilinear-model-
based predictive controller (BMPC) were set to:Hs =
3, Qy = 100, Ru = 1. The input Mf was restricted
such that the volume fraction of monomer in the feed
remained between 0.5 and 0.9. The setpoint for the
outputM was changed every 50 samples, as indicated
in figures 1 and 2, where the control results for LMPC
and BMPC, respectively, are plotted. Due to space
restrictions the input signals are not shown.

During the first 150 samples of figures 1 and 2 the
performances of LMPC and BMPC were similar. Dur-
ing the first 150 samples the MPC algorithms operate
approximately at the center of the operating region
used for identification. In this region the behavior of
the process is modeled well both by the linear model
and by the bilinear model, resulting in a similar per-
formance for both LMPC and BMPC. However, for
larger values of M the approximation of the behavior
of the process by the linear model deteriorates, which
results in an oscillatory response of LMPC between
samples 150 and 200, and, even more pronounced, be-
tween samples 350 and 400, see figure 1. The approx-
imating properties of the bilinear model, indicated by
the higher VAF values, are better than those of the lin-
ear model. Consequently, the performance of BMPC
is better than that of LMPC for operating points that
lie further from the center of the operating region used
for identification. Between samples 150 and 200 and
between samples 350 and 400 BMPC performs well,
whereas LMPC does not, compare figures 1 and 2.
The oscillatory behavior of the plant in closed loop
with LMPC can be prevented by tuning down the
controller. For this example this requires Qy to be
reduced to 1 for LMPC (data not shown). However,
this re-tuning makes the controller very conservative
which leads to a very slow response over the entire
operating region, in which case the performance of
LMPC usingQy = 1 is (still) inferior to that of BMPC
using Qy = 100.
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Fig. 1. Control results for LMPC; solid is the output
M , dashed is the setpoint for M .

6. DISCUSSION

In this paper the performances of a linear-model-based
and bilinear-model-based predictive control frame-
work have been compared. Both MPC algorithms have
been used to control a white-box simulation model
of the free-radical polymerization of methylmethacry-
late. Due to the intrinsic nonlinear nature of this
model, a linear model cannot approximate accurately
the behavior of the process over a large operating
region. Bilinear models, which can be regarded as an
extension of linear models by incorporating a product
term between the current input and the current state
into the state equation, possess more degrees of free-
dom and therefore should, from a theoretical point
of view, be able to approximate the behavior of a
nonlinear process more accurately than linear models.
This has been demonstrated for the case study in this
paper, where the higher VAF indices for the bilinear
model than that for the linear model indicate a better
approximation of the behavior of the nonlinear process
by the bilinear model than by the linear model.

For MPC algorithms it is obvious that the quality of
the controller depends on the quality of the model, see
also figures 1 and 2. The performance of LMPC and
BMPC is comparable when the process is operated
at the center of the operating region which is used
for identification. This is due to the fact that both
for the linear and the bilinear model some “average”
model is identified over the entire operating region,
which will be most valid at the center of the operating
region (under the assumption that the nonlinearity of
the model over the entire operating region is averaged
at the center). Further away from this center the perfor-
mance of LMPC is worse than that of BMPC since the
approximation of the nonlinear behavior by the linear
model is worse than that by the bilinear model.
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