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Abstract: Three main model transformations were used in the past for delay-

dependent stability. Recently a new (descriptor) model transformation has been

introduced. In the present paper for systems with time-varying delays we obtain new

delay-dependent stability conditions under descriptor model transformation. These

conditions are written in terms of linear matrix inequalities. We also refine recent

results on delay-dependent H, control and extend them to the case of time-varying

delays. Numerical examples illustrate the effectiveness of our method.
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1. INTRODUCTION

Time-delay often appears in many control systems
(such as aircraft, chemical or process control sys-
tems) and, in many cases, delay is a source of
instability (see e.g. Hale and Lunel 1993). The
stability issue of systems with delay is, therefore,
of theoretical and practical importance.

Delay-dependent stability conditions in terms of
linear matrix inequalities (LMIs) have been ob-
tained for retarded and neutral type systems.
These conditions are based on three main model
transformations of the original system (see Kol-
manovskii and Richard 1999). Recently a new
descriptor model transformation was introduced
for delay-dependent stability of neutral systems
(Fridman 2001) and of a more general class of
differential and algebraic (descriptor) system with
delay (Fridman 2002). Unlike previous transfor-
mations, the descriptor model leads to a system

which is equivalent to the original one, it does not
depend on additional assumptions for stability of
the transformed system and requires bounding of

fewer cross-terms.

Two main approaches for dealing with time-
varying delays have been suggested in the past.
The first is based on Lyapunov-Krasovskii func-
tionals and the second is based on Razumichin
theory. Two main cases of time-varying delays
have been considered:

A1 7;(t) are differentiable functions, satisfying for
allt >0

0 S Tz(t) S h’i: T‘L(t) S d’i: = 1527
or

A2 7;(t) are continuous functions, satisfying for
all ¢ Z 0, 0 S Ti(t) S hz', = 1,2.



To the best of our knowledge, the Razumichin’s
approach was the only one that was to cope with
the case A2, which allows fast time-varying delays.

In the present paper, we improve the delay-
dependent stability conditions of Fridman (2001),
that were based on descriptor model transforma-
tion, by applying tighter bounding of the cross
terms introduced in Park (1999). We extend the
results of Fridman (2001) to the case of systems
with time-varying delays. Our method based on
Lyapunov-Krasovskii functional seems to be the
first of this type for the case A2. Our results
significantly improve the existing ones (see Kim
2001 and references therein). Numerical example
shows that our method even for more robust case
A2 leads to less restrictive results, than those of
Kim (2001) which were obtained for the case Al.

A descriptor model transformation has been ap-
plied recently for H., control problem Fridman
and Shaked (2002). We refine results of Fridman
and Shaked (2002) and extend them to the time-

varying case.

Notation: Throughout the paper the superscript
“T” stands for matrix transposition, R™ denotes
the n dimensional Euclidean space with vector
norm |-|, R™*™ is the set of all nxm real matrices,
and the notation P >0, for P € R™*™ means that
P is symmetric and positive definite. We denote
z¢(0) = z(t + 0) (0 € [—h,0]).

2. STABILITY VIA DESCRIPTOR MODEL
TRANSFORMATION

Consider the following system with time-varying
delays:

2 2
:E(t) — ZFi.’iJ(t — gi) = ZAzl'(t — Ti(t)), (1)
o) = o(t), €m0

where g; > 0, i = 1,2 and z(t) € R™, 10 = 0,
A; and F; are constant n x n-matrices, ¢ is a
continuously differentiable initial function.

Taking in (1) h = max{h1,h2,91,92}. We are
looking for stability criteria, delay-independent
with respect to g; and dependent on h; and d;.
We consider, for simplicity, two delays g1, g2 and
T1, T2, but all the results are easily generalized for

the case of any finite number of delays. Represent-
ing (1) in the descriptor form

.'L'(t) = yz(t)a R
y(t) =Y Fy(t—g:) =D Aia(t)
i=0 i=0 (2)

t

—im / y(s)ds,

¢ t—7i(t)

and denoting

Z(t) = col{z(t), y(t)},

consider the following Lyapunov-Krasovskii func-

tional
V(t) =z (t)EPE(t) +Va+Va+ Vi, (3)
where
10 P o
E = P =
[0 0] ’ [P2 P3] ’
5 0 ¢
V=3, / y" (s)A] R; Aiy(s)dsde,
=1 0 the
5
Vi=Y [ 4 (6)Uw(s)ds,
=g
2 t
Va= Z 2% (5)Sz(s)ds.

=l L

Term V, is used in order to apply inequality of
Park (1999). By arguments similar to (Fridman,
2001), (Fridman and Shaked, 2001) we obtain

Theorem 1. In the case Al the neutral system
(1) is stable if there exist n x n matrices 0 <
P, P, P, S; =8 U =UL Wy, Wi and
R; = RT, i=1,2 that satisfy the following LMI :

[Ty @y hi®11 he®o —Wﬁz‘h
% \I’g hlq)lz hz‘I)Qg —ngAl
* X _thl 0 0
* % * —ho Ry 0
* % * x*  =S1(1-d)
* % * * *

* % * * *
| *  * * * *
~WiAs  Pj Fy PjF)
-WihAs P]F P]F
0 0 0
0 0 0
0 0 0 <0. (4)
—S2(l—ds) O 0
% —U1 0
* * —Us |




where
2

2
¥, = (ZAiT)PZ +P2T(2Ai)
i—0 i=0
2

2
+ Z(W;{Az + A;FWH) + Z Si,

=1 =1

=1

2 2
v, =P — Pl + (Z ATYPs + ZA;'TWil,
i=0 i
2
U;=-P3— Pl + Z(Ui + hiA] R;Ay),
i=1
p=[WhH+Pl], i=1,2

Similar to (Fridman 2001) we obtain

Corollary 2. Assume A2. The neutral system (1)
is stable if there exist m x n matrices 0 <
P, P, P3, Uy =U}l and R; = R, i =1,2
that satisfy the following LMI :

(@, ¥, P hPI PIF PIFE)]

x U3 WPy hPy P/F PI'F

* ok —h1R1 0 0 0

* Xk * —h2R2 0 0 <07
EE * * -U; 0

* % * * * —U2_

where Wz’l = Wig = 0, SZ' = 0, 1= 1,2.

Remark 1. Note that in (Fridman and Shaked
2002) application of Park inequality lead to 2n x
2n matrices R; and W; = R;M;P. As a result, a
more complicated form of LMI was derived. The
latter LMI leads to conservative conditions in the
case of state-feedback controller design, where it
was ssumeed that W; = ¢;P,¢; € R.

For Wy = —P5, Wio = =P, Ry = 5, i = 1,2,
LMI (4) implies for € — 0% the following delay-
independent/ delay-derivative-dependent LMI:

T 0 T 0 T 0 T 0
e LR PR R ET R Y
0 0 0

* — 1—dq)
* ! * ! —S2(1 — d2) 0 0 <0’
* * * U1 0
* * * * —Uz
where
0 I 0 AT 218 0
$ =p7T +[ ! ]P+ [ ¢

If the latter LMI is feasible then (4) is feasible
for a small enough € > 0 and for R; and W;
given above. Thus, Theorem 1 implies the delay-
independent/ delay-derivative-dependent condi-
tions given by the latter LMI. The conditions of

Theorem 1 are feasible for all h; > 0 if this LMI
holds.

Since the LMI of (4) is affine in the system
matrices, therefore Theorem 1 can be used to
derive a criterion that will guarantee the stability
in the case where the system matrices are not
exactly known and they reside within a given
polytope.

Example 1 Kim (2001). We consider

a2
+ {_11?1_ 1372] ot = (1)),

01 < 1.6, |d2]<.05, |71|<.1, [12[<.3

In Kim (2001), where the case Al (with 0 < 7 <
h, 7 < d < 1) was treated via transformation
I, the maximum values of h for which stability
is secured was found as a function of the bound
d on the delay rate of change. For d = 0 the
maximum value of h = .2412 was reported and
compared with previous results in the literature.
Applying the method of Theorem 1 we obtained
for d = 0 that the system is asymptotically stable
for the maximum value of h = 1. Our results are
favorably compared to those in Kim (2001) also
for d # 0. Even in the more general case A2, which
includes fast varying delays, we find h = .77, that
is significantly better than h < .24 by Kim (2001)
for the case Al.

3. H, CONTROL OF SYSTEMS WITH
TIME-VARYING STATE DELAYS

In this section we improve results of Fridman
and Shaked (2001, 2002), based on descriptor
transformation, and extend them to the case of
time-varying delay.

4.1. Delay-dependent Bounded Real Lemma
(BRL). Given the following system:

#(t) — Zle"(t - gi)ZZAiﬂf(t—Tz’(t))

1Biw(t), z(t)=0 t<0,
z(t)= Cz(t)

(5)

where z(t) € R™ is the system state vector,
w(t) € LI[0, oo] is the exogenous disturbance
signal and z(t) € RP is the state combination
(objective function signal) to be attenuated. The



time delays are defined in Section 3. The matrices
A;y i=0,...,2, F;, i = 1,2, By and C are con-
stant matrices of appropriate dimensions. For a
prescribed scalar v > 0, we define the performance
index:

/ (272 — v wTw)ds. (6)
0

Using argument of the previous section we obtain
the following BRL:

Lemma 3. Consider the system of (5). Assume
Al. For a prescribed v > 0, the cost function (6)
achieves J(w) < 0 for all nonzero w € L3[0, o0)
and for all positive delays g1, g2, if there exist P,
-P 0

Wi Wiz]

and n xn-matrices S; =S¥, U; = UY,
that satisfy the following LMI:

we|

R; = RY

o 0 0
3 pT [Bl] hi®,  hods —WT [Al]
=70 0 0 0
* * —hi1Rq 0 0
* * * —h2R2 0
* * * * —(1—-d1)S1
* * * * *
* * * * *
* * * * *
L * * * * *
r[ o0 r[o0 [0 c™
wr [l [a] e A [5]
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 < 0,(7)
—(1 — dg)S; 0 0 0
* —Uy 0 0
* * —U2 0
* * —1,
where for i = 1,2
0 I 2
T
¥ 2 pT 2 (E Aj
(E Ay) —1 i=0
Pt I I
5 _
DS 0
i=1
+ 2

0 Z(U- + hiAT R; Ay)

00 270 AT
+2W,T[ ]+;[00_W,~,

= [0 L][W;: + P.

Similarly to Corollary 2, the rate-independent
result is obtained

Corollary 4. Assume A2. For a prescribed v > 0,

the cost function (6) achieves J(w) < 0 for all

nonzero w € L£3[0, co) and for all positive delays
g1, 92, if there exist P and n X n-matrices U; =
UT, R; = RT that satisfy the following LML:

r[o 0] pr[o cT
] e e e[ R ]
P 0 0 0
* * —h1Ry 0 0 0 0
* * * —hoRo 0 0 0
* * * * Uy 0 0
* * * * * —Us 0
* * * * * * —Ip

where ®; = [P P3]T, i =1,2 and
0 I i 2
0(>_AD
v=pr| + i
O A -1 i=0
=0 L1 -1
0 0
n 2
0> (Ui + hiA R; A;)
i=1 i

4.2. State-feedback H, control.

Given the system

2
— Y Fi(t—g
+Blw(§1+32u( ),
2(t) =0Vt <0

ZAzt 7i(t

where u € R! is the control input, Fy, Fb,
Ay, Ay, Ay, By, B, are constant matrices of
appropriate dimension, z is the objective vector,
C € RP*™ and D;» € R™**. We look for a state-
feedback gain matrix K which, via the control law

u(t) = Kx(t), 9)

achieves J(w) < 0 for all nonzero w € £1[0, o0).

Substituting (9) into (8), we obtain the structure
of (1) with

Ao = Ag + BoK, A; = Ay,

10
ctc=C"C+ KTDL,D1,K (10)

Applying the BRL of Section 4.1 to the above
matrices, a nonlinear matrix inequality is obtained
due to the terms P BoK and P{ BoK.

In order to obtain a LMI we restrict ourselves to
the case of

W; = diag{—1I,, €}P, i=1,2,

where ¢; € R™*™ is a diagonal matrix. Such a
choice for W; is less conservative than the one in
(Fridman and Shaked 2002), where W; = ¢; P for
For ¢, = —1I, (7) yields the delay-

independent condition.

a scalar e;.

2() = col{Cw( )» Dizu(t)},

<0,

(®)



It is obvious from the requirement of 0 < P;, and
the fact that in (7) —(P3 + PJ') must be negative
definite, that P is nonsingular. Defining

Q1 0

-1 _ _
Pr=0= [Q2 Qs

] A = diag{Q, I} (11)

we multiply (7) by AT and A, on the left and
on the right, respectively. Applying Schur formula
to the quadratic term in @, and denoting S; =
S7', U; = U7' and Ry = R, i = 1,2 we
obtain, similarly to (Fridman and Shaked 2002),
the following

Theorem 5. Assume Al. Consider the system of
(8) and the cost function of (6). For a prescribed
0 < v, the state-feedback law of (9) achieves
J(w) < 0 for all nonzero w € L]0, oo) if for some
diagonal matrices €1, ea € R™*", there exist Q1 >
0, Si, S2, Ui, Us, , Q2, Q3, Ri, Ry € R™"
and Y € RYX™ that satisfy the following LMI:

Q2+Q3F g 0 0 0
* —Q3 — Qg‘ By hi(er + I.)R1 ha(e2 + I.)Ro
* * 772111 0 0
* * * —h1Ry 0
* * * * 7h,2R2
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

| * * * * *
0 0 @ Q@1 T YD),
€141 5, €2A252 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
—(1—d1)5, 0 0 0 0 0

* —(1—-d2)S2 0 0 0

* * -5 o0 0 0
* * * —So 0 0
* * * * —I 0
* * * * * -1
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *

0 ; 0 Q; thgAi thgAQ; ]

FiU1 Q3 FUz Q3 hiQz A} haQ3z Aj
0o 0 o 0 0 0
0o o0 o 0 0 0
0 o0 o 0 0 0
0o o0 o 0 0 0
0 o0 o 0 0 0
o o0 o0 0 0 0
0o 0 o0 0 0 0 <0,
o o0 o 0 0 0
0o o0 o0 0 0 0

-0y 0 0 0 0 0
x -O2 0 0 0
* * —U2 0 B 0
* * * —hiR 0
* * * * 7h2}_22 a

where
2 2
= T T T T RT
== Q3—Q2+Q1(ZAZ- + ZAZ- €)+Y ' B,.
i=0 i=1
The state-feedback gain is then given by
_ -1
K=YQ; . (12)

Choosing €; = 0, we obtain the counterpart of the
Theorem 5 for the case A2:

Corollary 6. Assume A2. Consider the system of
(8) and the cost function of (6). For a prescribed
0 < v, the state-feedback law of (9) achieves
J(w) < 0 for all nonzero w € L3[0, oo) if there
exist Q1 > 0, (71, UQ, , @2, Qs, Rl, R, € R™Xn
and Y € RY*™ that satisfy the following LMI:

[ Q2+ QF = 0 0 0 @Q:CTYTDEL,
* —Q3— Q3 Bi hiRi  haRo 0 0
* * -4, 0 0 0 0
* * * —hiRy 0 0 0
* * * * —haRs 0 0
* * * * * -1 0
* * * * * * —I
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *

L * * * * * * *

0 Qi 0 QF hiQ;A] haQjA; ]
FiU1 Q3 FUx QF hi1Q3 AT h2Qj AF

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 <0,
-0, 0 0 0 0 0

x U1 0 0 0 0

* * —Us 0 0 0

* * x  —Us 0 0

* * * * —hi1 Ry 0

* * * * * —hoRs 1

where
2
E=Q:-Q3+Q:1()_AT) +Y"B].
i=0
The state-feedback gain is then given by (12).

The results of this section may be adapted to the
case of systems with polytopic uncertainties sim-



ilarly to Section 3.2. The case of output-feedback
H, control for systems with time-varying delays
can be treated similarly to (Fridman and Shaked
2002) with corresponding modification of the first
phase (state-feedback) as above.

Example 2 de Souza and Li (1999). We consider
the system:

@(t) = Aoz(t) + A1z(t — 7) + Brw(t

)
+Bou(t), 2(t) = col{Ca(t), Disu(t)}, )

- 00 - -1 -1 1
AO_[OI]’AI_[O __9],31—[1],

01], Di2=0.1.

¥
I

(en]
Q
I

Applying method of de Souza and Li (1999)
based on transformation I (Corollary 3.2 there)
it was found that, for + = 0, the system is
stabilizable for all 7 < 1. For, say, 7 = .999 a
minimum value of v = 1.8822 results for K =
— [.10452 749058 ]. Using the method of Frid-
man and Shaked (2001) (descriptor transforma-
tion with conservative bounding of cross terms)
for 7 = 0, a minimum value of v = .22844 was
obtained for the same value of 7 with a state-
feedback gain of K = [0 — 182194 |. By Corollary
6, the same v and K are achieved in the case A2
of time-varying delay 7(¢) < 0.999.

Consider now the case Al with 0 < 7 < h, 7 <
d < 1. Applying, for 7 = 0 and € = —.3, the
method of Fridman and Shaked (2002) (Theorem
3.1 there), a maximum value of h = 1.28 was ob-
tained for which a state-feedback controller stabi-
lizes the system. The corresponding feedback gain
was K = [0 — 1.2091 x 10°]. Using Theorem 5 of
the present paper we obtain for d = 0 a maximum
value of h = 1.408. for which there exists a state-
feedback gain that stabilizes the system. The max-
imum values of h that still allow stabilizabilty via
state-feedback are found as a function of d.

4. CONCLUSIONS

A delay-dependent LMI solution is proposed for
the problems of stability and H., control of lin-
ear systems with time-varying delays. This so-
lution is based on the descriptor model trans-
formation and a Park’s inequality for bounding

of cross terms. Two types of results for sys-
tems with time-varying delays have been de-
rived: delay-dependent /rate-dependent and delay-
dependent /rate-independent. Our results for the
second case, which includes fast-varying delays,
seem to be the first results based on Lyapunov-
Krasovskii functionals.
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