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Abstract: In this paper, the constructive modeling procedure of nonholonomic mobile 
robot system is carried out with the help of controllability Lie algebra used in 
differential geometry field. And, a new trajectory controller is suggested to 
guarantee its convergence to reference trajectory. Design procedure of the 
suggested trajectory controller is back-stepping scheme which was introduced 
recently in nonlinear control theory. The performance of the proposed trajectory 
controller is verified via computer simulation. In the simulation the trajectory 
controller is applied to differentially driven mobile robot system on the assumption 
thai the trajectory planner be given. Copyright 0 ZUUZ IFAC 
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1. INTRODUCTION 

Generally, the lvheel-driven mobile robot systems, 
b!. their structural property, have nonholonomic 
constraints. The Brockett’s theorem says that 
such systems cannot be stabilized to an 
equilibrium point by smooth and time-invariant 
state feedback controllers (Brockett et al., 1983). 
Although nonholonomic systems have been 
studied in classical mechanics for more than 150 
years. it is only recently that the study of control 
problems for such systems has been initiated 
(L+-ang, 1996: Bullo, 1999). The reason is as 
follows. Constraints of nonholonomic systems are 
not integrable and cannot be written as time 
derivatives of some function of the generalized 
coordinates. Hence, nonlinear approaches are 
required to solve the problems 

In this paper, the constructive modeling procedure 
of nonholonomic mobile robot systems is carried 
out with the help of controllability Lie algebra 
used in differential geometry field, and their 
geometrical properties are also analyzed. And, a 

new trajectory controller is suggested to 
guarantee its convergence to reference trajectory. 
Design procedure of the suggested trajectory 
controller is back-stepping scheme which \vas 
introduced recently in nonlinear control theory. 
The back-stepping procedure guarantees the 
existence of Lyapunov function to verify the 
stability of the overall system, and provides 
alternative of the existing feedback linearization 
technique (d’Andrea-Novel et al., 1992). which 
often confronts the complexity of design 
procedure in MIMO system and some problems to 
make worse system‘s performance. The design 
procedure of the trajectory controller for mobile 
robot system is summarized as follows: the 
kinematic model of a mobile robot is transformed 
into the chained nonholonomic form via coordinate 
transformation and its input change. and then the 
chained nonholonomic sysEem is used to design 
the trajectory controller based on the 
back-stepping procedure. The stability of the 
suggested trajectory controller is guaranteed by 
the existence of Lyapunov function and its 
asymptotical stability is also proved by applying 
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the Habalat's lemma (Slotine. 1991) state equation of the control system is given bv 

The performance of the proposed trajectory 
controller is verified via computer simulation. In 
the simulation, the trajectory controller is applied 

'to differentially driven mobile robot system on the 
assumption that the trajectory planner be given. 

2. CONTROLLER DESIGN USING 
BACK-STEPPING SCHEME 

In this chapter, the feedback controller design 
method of the nonlinear system using back- 
stepping scheme is proposed. Suppose that the 
controlled system is represented by 

And suppose that smooth feedbak control laws 
U =a(x), a(0) = 0 where input is [ ER exist 

in ( l a ) .  and ( l a )  satisfies following condition, 

= ( x ) [ f ( x )  + d x ) d x ) I L  - Uix)SOVxE R dx 
( 2 )  

where V :  R" +R is positive definitive and 
radially unbounded smooth function, W :  R" -R 
is positive definitive or positive semi-definitive 
function. 

First, if W(x) is positive definitive function, the 
following function ( 3 )  is control Lyapunov 
function to the entire system, and thus there 
exists a feedback controller u=a,(x,  [) that 
globally and asymptotically stabilizes at 
equilibrium point x= 0, 6 =O. 

For a example of the stable feedback controller, 
there is as  follows. 

aff dV 
U = - c( E-  dx)) + [Ax) + d x ) E I  - ax ( x ) g ( x ) ,  

c> 0 
(4) 

If w(x) is positive semi-definitive function, there 
exists a feedback control input U =  a a ( x ,  f ) > O  
that satiesfies V u 5  - W(x, 5 )CO and becomes 
W(x, 6) >O when w(x) > O  or [#a(x). And the 

state variable [ x( t) ', [( t ) ]  ' of the overall 
feedback control system converges to the largest 
invariant set contained in the following set 
(KI-itic. et al., 1995), 

Introducing the error variable z =  6 -a(x), the 

Eqution (5a) satisfies the assumption given by 
(21, so using ( 2 )  the time derivative of the 
control Lyapunov function V,(x, 6) is given by 

d V  vu  = Z(f+ gi U+ zl)+ z[ U -  -g (f+ gi (Y+ 2l)l  

5 MX) + z[ ax g + U - * U+ gi (Y + 2111 d V  

(6) 
Thus selecting the control input U that satisfies 

V a l  - W,(x, [ ) S  - W(x), by the positive 

definitive character of WO and LaSalle- 

Yoshizawa's theorem (Slotine, 19911, x, z and 6 
is globally bounded and w(x( t ) )  and z ( t )  
converge to 0 along the time t+m. And by the 
LaSalle's theorem. it is guaranted that 
[ x( t) ', [( t ) ]  ' converges to the largest invariant 

set contained in the set E ,  = { [x', [I 'E R 1 
w(x) =O}. 

To satisfy the upper property, Vc2 has to be 

negative definitive function about z. Applying the 
control input U given by (4) to the equation ( 6 ) .  
there is as follows. 

If W(x) is positive definitive function, by the 
LaSalle-Yoshizawa's theorem, the equilibrium 
point x = 0 ,  2 = 0 is globally and asymptotically 
stable. Thus x= 0 ,  6 = 0 is also globally and 
asymptotically stable because of z = [ -  a(x) and 
do) = 0.  

Now we extend that the controlled system has 
the increased form by k integrator Then the 
feedback controller design of that system using 
back-stepping scheme is proposed. In this case, 
the controlled system can be written as 

In the system given by (81, suppose that 
il, .", [ k  are virtual inputs. And then applying 

repeatedly the back-stepping procedure explained 
previously, the Lyapunov function is given by 



V b ,  t l , ' . . ,  [ k ) =  

v(x )++  A[ t= 1 ti- az-l(x, ~ l , . ' . ,  ti-]) 1 '  
(9) 

Similarly selecting the control input U that 

satisfies V,< - WLI(x, t l ,  ... [ i P l ) < O ,  Mx) = o 
Lvhen W,(x, f l ,  . . . ,  equals 0 and 

[ ,= ~ , - ~ ( x ,  [ l , . . . ,  to all i, the state 

variable [ xT( t) , cl( t ) ,  ... , [ k ( t ) ]  of the overall 
system is globally bounded and by the LaSalle- 
Yoshizawa's theorem converges to the largest 
invariant set M, contained in the following set, 

If W(x) is positive definitive function, x= 0 is 
globally and asymptotically stable by means of 

f 1 ,  It means that equilibrium point x= 0,  
f 1  = ... = tk= 0 can be stable via control input 

U. That is, to the system contained with k 
integrator, we can also see that the feedback 
Controller design using back-stepping procedure 
guarantees simultaneously the stability and 
boundness of the overall system. 

A s  examined above, in the case of the controller 
design of nonlinear system using back-stepping 
pi-ocedure alnays guarantees the stability of the 
overall feedback system on each step. 

3. TRAJECTORY CONTROLLER DESIGN 
OF MOBILE ROBOT 

Fig. 1 shows the appearance of differentially 
driven mobile robot used in this experiment. This 
mobile robot is Pioneer 1 made in Active Media 
Inc. 'The structure of this mobile robot is 
composed of two fixed wheel and one caster type 
wheel. 

Canera  

1 %  

The kinematic model of differentially driven 
mobie robot can be written a s  

where U is line velocity of mobile robot and w 
is revolutionary angular velocity of mobile robot. 

T o  the kinematic model of the mobile robot given 
by (101, we perform the following diffeomorphism 
coordinate transfomation (1 1)  and input 
transfomation (12).  

U1 = w 
ug= U-wx3 

Then the kinematic model of the mobile 
be transformed into the following 
nonholonomic form 

(12) 

robot can 
chained 

113) 

Thus the trajectory planner model of the mobile 
robot is designed as follows. 

From the equation (13) and (141, the error 
dynamics is given by 

The trajectory control problem is identical with 
the feedback controller design problem that makes 
the state variable error converge to 0. Now we 
design the nonlinear controller that asymptotically 
stabilizes the equilibrium point of the error 
dynamics (15) using back-stepping procedure. 
Applying the diffeomorphism coordinate trans- 
fomation ~D~(x,;x, ,)  : R" - R". we can obtain 
ne%' state variable (16) and state equation (17). 

Fig. 1. Pioneer 1 mobile robot 
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Fig 2 Block diagram of trajectory controller 

From the equation (171, designing the controller 
using back-stepping procedure, the controller can 
he obtained as 

where c1, c2 and c3 are design variables. 
Applying the equation (12) to (18). the equation 
( 18) can be transformed a s  follows. 

z z 

w = U l d - C 3 Y 3 +  F l ( U E d - C Z Y Z - U l d Y 1 )  

(19) 
The velocity U and angular velocity U of the 
mobile robot are given by the composition of 
revolutionary veiocity at each wheel. 

Synthesizing the procedure of the controller 
design, the trajectory controller of the mobile 
robot proposed in this paper is shown as Fig. 2. 

4. COMPUTER SIlLIULATION AND RESULTS 

T o  verify the validity of the trajectory 
controiler proposed in this paper, we perform the 
computer simulation. The  trajectory used in this 
simulation is given by table 1. 

Table 1 SDecification of traiectorv used in 
simulation 

Trajectorq- Trajectory Initial Average Average 
name form position velocity angular 
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Fig 3(c) Control input of mobile robot on 
tracking the trajectory A 

In each case, suppose that the initial posture of 
the robot has the error The design variables used in the simulation are given by 
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Fig. 4(b)  The error on tracking the trajecory B 
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Fig 4(c) Control input of mobile robot on 
tracking the trajectory B 

Fig. 3 shows the tracking features of the mobile 
robot to the trajectory A. In Fig. 3(a) ,  the initial 
position of the mobile robot is (0,-0.1,0) and 
the trajectory generates to the angle of 45' with 
respect to x axis. In this case, we can see that 
the tracking of the mobile robot does'nt show the 
overshoot and the mobile robot converges to 
reference trajectory by the trajectory controller. 
The controller designed by back-stepping scheme 
is a little slow in the converging speed than 
Kanayama's controller but doesn't generate 
overshoot in the trajectory tracking(Kanayama, et 
al., 1991). Fig. 3(b) shows the state variable error 
of the mobile robot on tracking the trajectory A. 
Fig. 3(c) shows the control input of the mobile 
robot on tracking the trajectory A. 

Fig. 4 shows the tracking features of the mobile 
robot to the trajectory B. In this case, the 
trajectory is generated for the mobile robot to do 
straight and rotational motion repeatedly. After 
the mobile robot converges to reference trajectory, 
we can see that the mobile robot performs perfect 
tracking if the change of curvature in the 
trajectory is bounded. 

Fig. 5 shows the change of trajectory tracking 
response according to the gain change of the 
designed controller. In this case, the gain values 
to be selected are given by 

If the gain values of the controller are low, we 
can see that the converging speed to the 
trajectory may be slow. On the other hand, in 
proportion as the gain values are high, the control 
values are increased and the speed of response 
will be fast 
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Fig. 5. Change of tracking response according to 

the change of gain 



5. CONCLUSION 

The dynamic characteristics of a mobile robot 
was analyzed through the analysis of the 
nonholonomic system. And, a new trajectory 
controller of a mobile robot was suggested to 
guarantee its convergence to reference trajectory. 
Design procedure of the suggested trajectory 
controller is back-stepping scheme which was 
introduced recently in nonlinear control theory. 
The back-stepping procedure guarantees the 
existence of Lyapunov function to verify the 
stability of the overall system. The  kinematic 
model of a mobile robot was transformed into the 
chained nonholonomic form via coordinate 
transformation and its input change. And then the 
chained nonholonomic system was used to design 
the trajectory controller based on the 
back-stepping procedure. 

The performance of the proposed trajectory 
controller was verified via computer simulation. In 
the simulation, the controller of a mobile robot 
generates no overshoot and converges better to 
I-otational trajectory that has many change of the 
curvature. The  proposed trajectory controller can 
be applied to every type mobile robot that can be 
transformed into chained forrr. We can see that 
this method is more systematic and efficient than 
the trajectory controller based on feedback 
linearization technique proposed by d'Andrea- 
Novel (d '  Andrea- Novel, 1992). 
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