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Abstract: For linear singularly perturbed system with delay sufficient conditions for

stability for all small enough values of singular perturbation parameter £ are obtained

in the general case, when delay and € are independent. The sufficient delay-dependent

conditions are given in terms of linear matrix inequalities (LMIs) by applying an

appropriate Lyapunov-Krasovskii functional. LMIs are derived by using a descriptor

model transformation and Park’s inequality for bounding cross terms. A memoryless

state-feedback stabilizing controller is obtained. Numerical examples illustrate the
effectiveness of the new theory. Copyright C 2001 IFAC
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1. INTRODUCTION

It is well-known that if the ordinary differential system
of equations is asymptotically stable, then this property
is robust with respect to small delays (see e.g. El’sgol’ts
and Norkin (1973), Hale and Lunel (1993)). Examples
of the systems, where small delays change the stability
of the system are given in Hale and Lunel (1999) (see
also references therein). All these examples are infinite-
dimensional systems, e.g. difference systems, neutral
type systems with unstable difference operator or sys-
tems of partial differential equations. Another example
of a system, sensitive to small delays, is a descriptor
system . Recently a new example has been given of
a finite dimensional system that may be destabilized
by introduction of small delay in the loop (Fridman,
2002a). This is a singularly perturbed system. Consider
the following simple example:

ex(t) = u(t), u(t)=-xz(t—h), 1)
where z(t) € R and € > 0 is a small parameter. Eq. (1)
is stable for h = 0, however for small delays h = eg with

g > 7/2 this system becomes unstable (see e.g. El’sgol’ts
and Norkin (1973)).

Stability of singularly perturbed systems with delays has
been studied in two cases: 1) h is proportional to £ and
2) € and h are independent. The first case, being less
general than the second one, is encountered in many
publications (see e.g. Glizer and Fridman (2000) and
references therein). The second case has been studied
in the frequency domain in Luse (1987), Pan et al.
(1996) (see also references therein). A Lyapunov-based
approach to the problem leading to LMIs has been
introduced in Fridman (2002a) for the general case
of independent delay and ¢. LMI conditions are only
sufficient and, thus more conservative. However the



method of LMIs is better (than the frequency domain
methods) adapted for robust stability of systems with
uncertainties and for other control problems (see e.g. Li
and de Souza, 1997).

LMI stability conditions of Fridman (2002a) are based
on the conservative model transformation of regular
systems with delay used by many authors (see Li and
1999 and refer-
ences therein). The conservatism of Fridman (2002a)

de Souza, 1997; Kolmanovskii et al.,

, as well as in the regular case (see e.g. Kharitonov
and Melchor-Aguilar, 2000; Niculescu and Gu, 2001) is
twofold: the transformed equation is not equivalent to
the corresponding differential equation and the bounds
placed upon cross terms are wasteful. Recently a new
(equivalent to the original equation) model transforma-
tion - a descriptor one - has been introduced for stability
analysis of regular systems with delay Fridman (2001).
Moreover, a new bounding of the cross terms and new
delay-dependent stability criterion have been obtained
in Park (1999).

In the present paper we adopt the methods of Fridman
(2001) and Park (1999) for constructing appropriate
Lyapunov-Krasovskii functionals and deriving LMI sta-
bility conditions for singularly perturbed systems with
delay in the case of independent delay and €. We show
that if a certain e-independent LMI is feasible than
the system is asymptotically stable for all small enough
€ > 0. Moreover, given £ > 0 we obtain e-dependent LMI
conditions for stability. We construct an e-independent
state-feedback controller, that stabilizes the system for
all small enough € > 0, by solving e-independent LMI.
The latter LMI corresponds to the state-feedback stabi-
lization of the corresponding descriptor system.

Notation: Throughout the paper the superscript ‘T”
stands for matrix trarRflesitimsndie

mensional Euclidean space witff&br norm

the set ofiadmeal matrices, and tH@notation 0,
for PR™titans Fimsymmetric and positive

definite. We also denote z;(0) = z(t D4 &h, 0]).

2. LMI STABLTYCONDITION S

2.1. Dlydepshtondit wolt
the following system:

e > 0. Given

E.i(t) =A¢ z(t) + A1 z(t — h), (2)

®)}, z1(t) R ™, za(t) €
R™s the system state vector, The matrix FE. is given
by

where z(t) =col{ z1(t), =

I 0
B =|™m
¢ [ 0 EIn2:| ’ (3)

where € > 0 is a small parameter. The time delay h > 0
is assumed to be known. We took for simplicity one
delay, but all the results are easily generalized for the
case of any finite number of delays.

Denote A ni1 + ns. The matdices ¢ andA ; are
constant xmmtrices of appropriate dimensions. The

matrices in (2) have the following structure:

An A-Q] )
A= . = 0,1. 4
’ [ Aiz Au )
In this section weAgquire 4 to be nonsingular.
Consider the fast system
Z2(t) =A 0422(t) + Araz2(t — g), g€ 0,00p)(

with characteristic equation

AX) =t I— Aos —

A ™Y . (6)
A necessary condition for robust stability of (2) is given
by

Lemma 1. (Fridman, 2002a) Let (2) is stable for all
small enough € and h. Then for all g > 0 characteristic
equation (6) has no roots with positive real parts.

According to this lemma we derive criterion for asymp-
totic stability which is delay-independent in the fast
variables and delay-dependent in the slow ones. Follow-
ing (Fridman, 2002a) we represent (2) in the equivalent

form:

t) ),
EIEz Aoz + A A04]
t
[ ] [Am + A1 Ago z(t)

[a]eeaf ] frose

(7)

The latter system can be represented in the form:
0
E.z(t) = Aoz(t) + A1z(t — B)H /y(t+)dss( 8)
—h

where



1 Inl 0 0
= |x2 , EE = 0 6In2 0 ;
y 0 0 Opnyixng

0 0 I,
Ag = | Aoz + A1z A4gs 0 |, 9)
| Aor + A11 Aoz —In,
[0 0 O 0
Alz 0 A14 0 ; H = —A13] -
10 A12 0 —An

A Lyapunov-Krasovskii functional for the system (7) has
the form:

t
V(t) = 21 (t)E.P.z(t) + / x] (1)S z1 (ryr
Zh

o3 (T 2o (T)T (10)

wher® . has the structure of

P. 0
Fe= [P2 Pg] ’
with P 11 € R™Pt 13 ER™*PER™ 384
0< SR ™m*m  0<UR ™*", 0< RgeR "™*".
The first term of (10) corresponds to the descriptor
system, the second and the fourth terms - to the delay-
dependent conditions with respect to xz; and the third
- to the delay-independent conditions with respect to
x2. For ¢ = 0 Lyapunov-Krasovskii functional of (10)
corresponds to descriptor system of (8) with e = 0
Fridman (2002b). We obtain the following:

Theorem 2. (i) Given € > 0, h > 0, the system (2)
is asymptotically stable if ther® exist matrices . €
R(mit+n)x(ni+n) of (11) 0 < Py, € RM*m 0 <
Py3 eR™2P2 o € R™MPER™SHeh that

E.P;., > 0 and matrié&§ T e RvU=

UT € Rr2xne I ¢ Rm+mx(m+n) gnd R = RT €
Rmtn)x(nitn) that satisfy the following LMI:

0 0
. hx -wT A13:| Pr |:AM

A A
* —hR 0 " 0 * < Oa (12)
* * -S 0
* * * U
where
X=w"+Pl,

0 00 0 AT, AT,
U, =0, +WT | 45300[+]|0 0 0 |W

A1 00 00 O

and

. 0 0 I
T, = PT | Aps + A1z Ags O
Aot + A Ao2 —1In,

0 0 I,
| Ao1 + A1y Aoz =1, (13)
S 0 0
0oU 0
+ 0
0 0 h[0 A]; AT R | A3
| A

(ii) Given h > 0, if there exfidts ¢ of (11) 0 < Py; €
RMm>Xm_ () < Pig €R™ 2X™2 Py € RM*" Pg
R™M*™M and matrices S = ST € RM*Xm, U =
Ut € Rr2xme 7 e RmAmx(m+n) and R = RT €
R(rtn)x(nitn) guch that (12) is feasible for € = 0 then
(2) is asymptotically stable for all small enough ¢ > 0
and 0 < h < h.

Prdo (i) Differentiating the first term of (10) with
respect to ¢t we have:
d - .
a;ET(t)EEPE;E(t) =231 (t)P.E.z(t). (14)

Substituting (7) into (14) and applying bounding of
Park (1999) we obtain, similarly to Fridman (2002a)
, Fridman and Shaked (2001), that if (12) holds, then
dV/d < 0 and (2) is internally stable.

(ii) If (12) is feasible for ¢ = 0, then it is feasible
for all small enough € > 0 and thus due to (i) (2) is
asymptotically stable for these values of € > 0. LMI
(12) is convex with respect to h. Hence, if it is feasible
for some h then it is feasible for all 0 < h < h. ]

2.2. Dydepuhtility fhedscptor

sysem . We will show that (12) for ¢ = 0 guarantees
asymptotic stability of the descriptor system (2), where
€ = 0. The following lemma will be useful:

Lemma  (Fridman, 2002b). Assume that the differ-

ence equation
Dy = z(t) + Ay Apaz(t —g) =0

is asymptotically stable, or equivalently Hale and Lunel
(1993) assume that all the edgenvalues of 5'A;4 are
inside a unit circle. Then if there exist positive numbers
a, f3vand a continuous functional  V : Cpqn,[—h,0] =

R such that

Blof 0)* <V (¢) <Ald]>, V($) < —alp(0)[*,(15)



and the function V (t) = V(z;) is absolutely continuous
for Z; satisfying (7) with € = 0, then (7) (and thus (2)
with € = 0) is asymptotically stable.

Consider the descriptor system (2) with ¢ = 0. If
(12) holds for ¢ = 0, then the Lyapunov-Krasovskii
functional of (10) with ¢ = 0 is nonnegative and has
a negative-definite ddgivhéivena 3 the latter
guarantees the asymptotic stability of the descriptor
system provided that all the eigénvalues of " A4 are
inside a unit circle. We show next that (12) with e =0
yields the following inequality:

Af4Pis + PisAgs + U PigAyy

T <0, (16)
AT Py U
that guarantees the stability ob}Herfast system (
all delays g > 0. Hencdy,
eigenvalueslof ;' A14 are inside a unit circle (Fridman,
2002a).

4 is Hurwitz and all the

Lemmp  If (12) with € = 0 is feasible, then (16) is
feasible, the fast 5yssemsymptotically stable for

all delays g > 0, Ags is Hurwitz and all the eigenvalues
of A541A14 are inside a unit circle.

Prdo . It is obvious from the requirement of 0 <
Py1, 0 < Pi3, and the fact that in (12) P3P
be negative definif®, that

-1 _ @1 0 | Quu O
Fo _QO_[Qz Q3]’Q1_[Q12 le]’ (a7)

I must

o is nonsingular. Defining

wher@ 11 € R™*™, Q13 €R ™*"2, QR  ™*™ and
A = difQ  Izpyn, } we multiply (12) byA T andA

on the left and on the right, respectively. Since the term
(2,2) of the matrix is equal to zero, the latter inequality

implies

Q13434 + A0sQ13 + Q13UQ13 A

Q15 AT, U <0 (18)
Multiplying (18) bydigP 13, In,} from the left and
the right we obtain (16). From (16) it follows #hat o4
is Hurwitz and all the eifenvalues of 041A14 are inside
a unit circle (Fridman, 2002a). O

From Theorem 2, Lemmas 3 and4we obtain

Corollaryy  Given h > 0, if there eflsts ¢ of (11)
0 < Pp € R*m_ (0 < Pi3 €R™ 2*™ P, €
RMx™ PER mXnand matrices S = ST €
Ruxy = Ul ¢ REWe e R(mt+n)x(ni+n) 554

R = RT ¢ R(mtn)x(m+n) gych that (12) is feasible
for £ = 0 then (2) is asymptotically stable for all small
enough e > 0 and 0 < h < h.

Remdr 1. For stability of descriptor system (2) with
€ = 0 it is sufficient to require feasibility of (12) for
€ = 0 withP 1; > 0, where&s 13 may be non-symmetric.
Positivity Fof
enough € > 0.

13 guarantees stability of (2) for small

Exnp 1 Fridman (2002a). Consider the system

.Ci?l :$2(t)+$1(t—h), (19)

E.fi'Q = —.CL'Q(t) + 0.5$2(t — h) — 21‘1 (t)
For h = 0 this system is asymptotically stable for
all small enough ¢ since A1 and A2 hold. It is well-
known (see e.g. Hale and Lunel, 1993) that the fast
system Z2(t) = —x2(t) + 0.522(t — g) is asymptotically
stable for all g. Thus necessary condition for robust
stability with respect to small ¢ is satisfied. It was
shown in Fridman (2002a) that the system is robustly
asymptotically stable with respect to small ¢ and h and
for e = 0.5, h = 0 the system is unstable. The conditions
of Fridman (2002a) are conservative. Thus for € = 0 (19)
is delay-independently stable (Fridman, 2002b), while
LMI of Fridman (2002a) for € = 0 is feasible only for
h<D 44

Applying Theorem 2 we find that for 0 < ¢ <.03
the system is asymptotically stable for all delays, while
for € = 0.4 the system is asymptotically stable for
0 < h <.0 0048 (compare with 0 < h <.0 001 obtained
in Fridman, 2002a). For ¢ = 0.5 LMI (12) is not feasible
for h — 0 since the system is unstable for h = 0. We see
that the results of the present paper are essentially less
conservative than those of Fridman (2002a). This is due
to new (descriptor) model transformation of the system
and Park’s bounds of the cross terms.

2.2. Dyinédpedhtonditimon

Theorem 6. . Given € > 0 the system (2) is asymptoti-
cally stable for all A > 0 if there existatrik c
of the form
P, eP] ]
P, P
0 andn 5 X ne-matrix’ 3
T R = RT that satisfy the

r-|

withni-matyiPp>
andn xnatrited/
following LMI:

T T T
PEA0+A0PE+QPEA1<0 (20)
* -U



If (20) is feasible for ¢ = 0, then system (2) is delay-
independently asymptotically stable for all small enough
e >0.

Prdo is obtained by similar to Theorem 2 arguments
by using Lyapunov-Krasovskii functional of the form

V(t) = 2T (t)E. P.ax(t) + / T (T ()T . O
t=h

Another delay-independent condition follows from The-
orem 2. For

d I2n
=P €3 = 3
w R 5

(21)

LMI (12) implies for § — 07 the following delay-
independent LMI:

0 0
o, PT [Am PT A14:|
A1 A1z <0, (22)
* -S 0
* * U
where
T
) 0 0 I, 0 0 I,
U, =PF | A3 Aps O |+ | Aoz Aps O P,
Ap1 Az —1I, Agp Az —1I,
S00
+|{0UO
000

If LMI (22) is feasible then (12) is feasible for small
enough € > 0 andW and R given by (21). Thus, from
Theorem 2 the following corollary follows:

Corollary 7. Given € > 0, system (2) is asymptotically
stable for all ¢ > 0,h > 0, if there exist 0 < P, =
Pl Py, P;,and€ T, S= ST, that satisfy (22).

3. DEEAEPENRENT RO ST
STARIAATIBMBMOR SS
STATE-HRER

We apply the results of the previous section to the
stabilization problem. Given the system

E.i(t) =Ao z(t) + A1z(t — BB 2u(t), (23)
where E. is defined by (3). In this section we do not
assume tHat (4 is nonsingular. Similarly to the case
without delayAwith
non-staul
of singuldr ¢4 open-loop system (23), where ¢ = 0,
without delay, i.e. withs

1=0), we call such a system as a
singularly perturbed system. In the case

0, have index more than

one (see e.g. Dai, 1989). Hence, index of system (23)
with v = 0 and with delay, which is defined in Fridman
(2002b) to be equal to the index of (23) withts 0,
is higher than one. Such a system have an impulse
solution (Fridman, 2002b). The non-singulhrity of ¢4
guarantees the existence and the uniqueness of solution
to initial value problem for (23) with v = 0 (Fridman,
2002b).

We look for the state-feedback e-independent gain ma-
trix Kwhich, via the control law

u(t) K z(t), K =[Ki,Ks] (24)

stabilizes system (23) for all small enough . We derive
delay-dependent conditions since they are less conserva-
tive. Substituting (24) into (23), we obtain the struc-
ture of (2) witly + B K instead 4§ In order

to obtain an LMI we have to restrict ourselves to the
case ¥ o = 0Py, where § € Rmtn)x(ndn1) jg 5
diagonal matrix. Note that for § = —I (12) yields the
delay-independent condition of Corollary 7. As it was
mentioned in the prgdf of Lemma
Definin ' = Qo by (17) andydifQ Lintn }
we multiply (12) byA 7 andAon the left and on the
right, respectively. Applying the Schur formula to the
quadratic texpaid den&tflgye obtain

the following:

o is nonsingular.

Theorem 8. Consider the system of (23), (3). The state-
feedback law of (24) asymptotically stabilizes (23), (3)
for all small enough £ > 0 if for some prescribed diagonal
matrix § € ROFr)X(nHhn1) - there exist 0 < Q; €
R 0 < S§S=8teRruxm 0<UH e
R™*m2 Qg € R™M*™ an@gR™ xmoof (17)
0 < R= R € Rntn)x(ntm) y @L¥Pat satisfy

0 0
E1 4+ Zo h(6+I)R5|:A13:|§ |:A14:|UQT|:I"1]
0
~ An Al
* —hR 0 0 0
* * -5 0 0
* * * -U 0
* * * * -8
* * * * *
| * * * * *
0 0 0 0
QT |:In2:| QT |0 0 o
0 0 AT, AT,
0 0
0 0 <0, (25)
0 0
0 0
-U 0
* —hR i

where



[ 0 0 I,
Er =Y Az +(IT+6)A3 Aps 0 |[Q
[Am + (I +6)A11 Aoz —In, |

0 0o I, 1"
+QT | Ags H I +6)A13 Aos O )
Apr € T+ 6)A11 Age I, |
Sy = [ 0 ] Y 0,,] + [YT][OBT]
By m Ony 2
The state-feedback gain is khen given by =Y Q7 1

The LMI in Theorems 2 and 8 are affine in the system
matrices. They can thus be applied also to the case
where these matrices are uncertain and are known to

reside within a given polytope.

Exnp 2:  We consider the system

E.i(t) =Ay ot — A)t), (26)

where
10 -1 0 —0.5
e FH U T B

Note that in thisdexample o4 = 0. Applying Theorem
8 for e.g. h = 1 we find the stabilizing state-feedback
u =Kz, whelKE 42.4 —19401]. Applying next
Theorem 2 to the closed loop system (26), u ¥ =,
we verify that the closed-loop system is asymptotically
stable for h <.1 39 and all € > 0. For h = 1.4 LMIs of
these theorems are not feasible for all values of € > 0.

4. CONCLUSIONS

A LMI solution is proposed for the problem of stability
and robust state-feedback stabilization of linear time-
invariant singularly perturbed systems with delay. An
advantage of the new method that, unlike conventional
singularly perturbed methods (see e.g. Kokotovic et
al., 1986), it gives sufficient conditions for stability for
prechosen £ > 0 in terms of e-dependent LMI. A new
less conservative criterion than in (Fridman 2002a) for
stability is derived. It is based on the new Lyapunov
function of Fridman (2001).
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