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Abstract: We consider an integral form of the Isaacs equations associated to
differential games with L., criterion, for the characterization of their value functions.
We pro ve that upper and ler er values are the lov est super-solution and the largest
element of a special set of sub-solutions, of the dynamic programming equation. This
is an alternative to the viscosity solutions approach, without requiring any regularity
assumption on the value functions.

F or finite horizon apprximations, we propose a scheme in terms of an infinitesimal
operatordefined over the set of Lipschitz continuous functions. The images of this

operator can be characterized classically in terms of viscosity solutions.

We illustrate these results on a example, which values functions can be determined

analytically.
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1. INTRODUCTION

We consider dynamical system driven by tw o
controls (&,7n) :

SLUENS) = TR, ) m(s), 5>t

where 2 is an open domain of R™.

The player £ (respectively 7)) minimizes (respec-
tively maximizes) a criterion involving an essential
supremum of a given instantaneous cost, over an
infinite horizon :

P(mafan) = €ess  sup
TE[t,+00)

L Part of this work has been achieved while the first author
w as visiting I rance.

As usual in the theory of differential games, w e
consider the following sets of controls, where I is
either a finite number larger than ¢t or 4oco:

Z(t,I) :={¢:[t,]) — Z|& measurable},

Y(t,I):={n:[t,I) —» Y|n measurable},

where Z and Y are compact subsets of 7, and
R¢ respectively, and the sets of non-anticipating
strategies :

L(t,I)={a: Z(t, 1) = Y1) st. VT € [t, 1],

fl|[t,T] = f2|[t,T] = a[fl]ht,T] = 04[52]|[t,T],
v€17€2 € Z(ta'[)}a

A, D) ={8: Y1) — Z(t,1) s.t. VT € [t, 1],

mlie, 1) = 2l = Bl = Bl
Vfl,fz S Z(t,[)}

We consider then the low er andthe upper value
functions of the game, given respectively b y



V) et ey PP
n 00
V(@)= sup inf Pz, af¢])

€T (t,400) §EZ (¢, +00)

A typical instance of such criterion occurs when
the function h is chosen as the oriented distance
function to the complementary of a target. In that
case, the criterion P is a kind of measure of the
risk of entering the target (see (Yong, 1998)) :

e When P is positive, the target is avoided at
any time, and the value of P gives an idea of
the ”risk” of entering a dilated target.

e When P is negative, the target is entered in
finite time, and the value of P gives an idea of
how deep the trajectory can enter the target,
and avoid a smaller target.

e The null values of P characterize the trajec-
tories belonging to the barrier delimiting the
capture and evasion domains (see the “games
of kind” in (Rapaport, 1998; Bernhard et
al., 2001)).

For economical modeling, the target might cor-
respond to the set of crises. The particularities of
this criterion is to belong to a purely deterministic
framework over an unbounded horizon, without
the consideration of any discount factor. The price
to pay for the study of such games is their lack of
regularity.

Such games have been already analyzed, using
viscosity solutions, but in finite horizon (Barron,
1990). An extension to infinite horizon has been
proposed, but under additional hypotheses requir-
ing the semi-continuity of the values functions
V=, V* (Rapaport, 1998). The optimal control
problem (i.e. with only one player) over infinite
horizon has already been studied in (DiMarco
and Gonzalez, 1998), using a different approach
without requiring any regularity assumption on
the regularity of the value function. In this work,
we study how to extend these last results to the
two players case, without requiring any a priori
regularity of the value functions. We discuss also
their finite time approximations.

Because of the poor regularity presented by the
value functions (they might even be non semi-
continuous, see examples with one player in
(DiMarco and Gonzalez, 1998)), the viscosity so-
lutions framework cannot provide a unique char-
acterization of the value functions (see (Rapaport,
1998)). As an alternative to this approach, we
consider the integral form of the Isaacs equations
associated to the problem.

We assume the following hypotheses along this
work :

(A1) f € BUC(Q x Z x Y,R"), 3M;,L; st.

||f(y7€777)|| S Mf7 ||f(y17€777) - f(ylafan” S
Lf ||y1 - y2||7 Vy;ylay%f:n'

(A2) h € BUC(Q x Z x Y,®), AM;, Ly, s.t.
|h(y7€777)| S Mh: |h(y1>€77}) _h(y2>€7n)| S

Ly ||y1 - y2||7 Vy:ylaymfﬂl-
(A3) Q is invariant by the dynamics (1), for any

(&,m) € Z(t,+00) x Y(t,+00).

2. THE OPERATORS My

Define the payoff over finite time intervals :

Py r(z,&,n) = ess SEPT) h(ys (), €(r), (7).

and consider the operator M, : B(Q) — B(Q) :

MTw(z) = su inf
t () aer(%,t)gez(m) (2)

max { Py, (x, &, af€]), w(u§29 ()}

Analogously, we consider the lower operator M,
B(Q) — B(Q) :

M;w(z) = inf Sup
¢ w(z) BEA(0,t) ney(0,t) (3)

max {P07t(33;ﬁ[77]7 ), (yg[;?] "t ))} '

The dynamic programming principle provides the
following result :

Proposition 1. The functions V™ and V™~ are
bounded fixed points of M, and M, respectively,
for any t € [0, 00).

PROOF. See (Barron, 1990; Rapaport, 1998). O

Remark 2. Since the dynamic programming equa-
tion has not unique solution, it is not possible to
use standard methods to characterize the values
functions of the game. For this reason we consider
some special sets that allow us to do it.

Definition 3. Consider the following sets :
= {w € B(Y)|Mj*w < w},

= = {w e B(Y)|Mifw > w}, @

and their intersections :

= (1 s . w

t€[0,00)

= [ W&

t€[0,00)

Remark 4. Since now, we will work with the up-
per value of the game. Similar results can be
derived for the lower value.

Remark 5. The sets STand W™ are non empty
(Vt € ST nWt). Moreover, the function w =



—Myp, belongs to WT, and ST is lower bounded
by —Mh.

Since M;' is a non-decreasing monotonic operator
(w1 < w2, then M;"w; < M; ws) and has the
semi-group property : t; <ty = Mt"l' . Mt'g_tlw =
M (M, w) = M w (which is easy to check),
it can be proved that ST and W are closed by
application of M;‘,Vt > 0. Moreover, forall § > 0,
foralls € ST, M, s < M;"s and for allw € W,
M} s > M w

All these properties allow us to define for each
vE€STUWT and each z € Q,

tlim M v(z) = M*o(z) (5)
—>00
Lemma 6.
e MTs<s, foralseST and MTw > w, for
allwe Wt.

e M1 is monotonic on ST and on W.
e MTSt CStand MTWT CWT.

Definition 7. Let S = inf {s: s € ST} (which ex-
ists by Remark 5) and W = sup{w : w € W,}}
where W, is the minimum class of the family
W

W ={W,} CW" s.t(C1),(C2),(C3)}

(Cl) —My, € W:’_

(C2) MTWiF CWH.

(C3) Let {wp}per € W then sup{w, : p € I} €
+

Remark 8. The set W is not necessarily upper

bounded, then we take the supremum of a smaller

set, of sub-solution which possess these properties.

In fact, W,;} = () W which is nonempty
wew+

and {w € Wt :w < S} arein WT.

3. CHARACTERIZATION OF THE VALUES
The main result is the double characterization :

Theorem 9. Vt =S =W.

Similarly, V'~
S~ and W—.

can be characterized using the sets

PROOF. We first show that MtS = S.

It is clear that S < s, for any s € ST. By the
monotonic property of MT, we have MTS <
Mts <s, for any s € S*. In particular,

M*S<S.

Then, S € S*. Moreover, M+S € St and in
consequence, since S is the infimum in ST,

M*S>S.

Since V'V is a fixed point of M ™, it is clear that
V* € ST and that VT > S. On the other hand,
let s € ST, then by definition of ST, given ¢ > 0,
we have M; s < s .

Hence, for each a € T'(0,1),

inf max{POt(a: & alg]), sy 5,3[5]( ))} (6)

£€Z(0,t)
< s(w).

This implies that given € > 0, there exists & €
Z(0,t) such that

max {Po,t(l“a &, alé:]),

stwss™ e} )
s(x) +¢e

Consider a partition of [0, 00) :

[0, +00) = U [t,,t,+1) wheret, = tv.

veN

Let €, = €/2". Repeating the arguments in (6)
and (7), we have for each a, € I'(t,,t,4+1) the
existence of &, € Z(t,,t,+1) such that

max { P, o, 41 (055 (8), &0 [60),
sty + 1)}
s(yss (k) + e
We define recursively ¢ € Z(0, 00) by :
{ &(r) =& (1)
[t t,40)](7) = [€](7)

€ [tl/7 tI/+1)

and write :

_ yé g[é]( t,).

Then, it is clear that the trajectory generated by
(&, al]) verifies

tu41

Ty = + / FE2E (), &, (), awlE](r) dr

By induction it is easy to check that :

max { Py, (z,&,alé]),s(z,)} < s(z)

Then,

Py, (z,& af€]) < s(w



Taking the limit when v goes towards infinity,

Po, (@,&,0f8)) < s() + 2.

It follows that

Lt Pl ale]) < s(e) + 20

Now, for the same e, choose a. € I'(0,00) such
that

VT(z) < inf

P < .
= £€2(0,00) (iL’,f,Oé ) +e

As a consequence, we have :

VT(z) < s(z) + 3e.
Taking finally the limit when e goes to zero, we
obtain :

VT(z) < s(z).

These arguments are valid for any s € S*, and in
particular for S :

VT(r) < S(x), Ve

Since Wt e Wt, Wt £ . Let w € {w €
Wt |w < S}. By Remark 5, it follows that
—Mj, < S. By the monotonic property of M
(see Lemma 6), MTw < MTS and we have that
Mtw<MtS=S.

From this and the fact that M+tw € W, it follows
that :

Mtwe{weW'|w< S}

Let {wp}per C {w € Wt |w < S} then for any
p € I, it is valid that w, < S. In consequence,
sup,ec; wp < S and therefore,

supw, € {w € Wt |w < S}
pel

Thus, {w € Wt |w < S} € W' and it is easy
to check that W,} € Wt. By condition (C3),
W e Wb and W < S. On the other hand, W <
M*W and M+*W € W,. Then, by definition of
W, we get W > M+W. Therefore, W € S*. By
definition of S, it results that W > S.

So, we conclude that Vt =S =W. O

4. FINITE TIME APPROXIMATIONS

For (t,z) € [0,T] x 2, define the value functions :
Vi(t,z) = su inf Po(z,§a
7 (L) aEF(ET)ge Zir) 21 (@, €, a€])
Vi (t,z) = inf sup Py r(z, Bnl,n)

BEAT) ney(t,T)

It is clear that {V;F } >0 are bounded non decreas-
ing sequences which admit limits when 7" — 400 :

V() = Jlim ViE0,2) < V).

Remark 10. As it can be seen in the example

. —=x . . .
of section 5, V™, which is clearly lower semi-
continuous, can be different from V* (which is

not necessarily semi-continuous, see examples in
(DiMarco and Gonzalez, 1998)).

To provide a method to approximate V+, we con-
sider now the particular case where the instan-
taneous cost does not depend explicitly on the
controls. Fix an integer NV > 0 and define the
operators :

Myw(z) = sup inf
LN (=) a€l(0,t) SEZ(0,t)

max { _r{lax h(yé ;[é] (it/N)), (yé ;z[é]( ))}

1=

M w(x) = sup inf
N (=) a€r(0,t/N) E€2(0,t/N)

max { (s (t/N), w(ui s e/}
Then, it is straightforward to prove the
Lemma 11. For any w € B({2), we have :

t
M:'Nw(;r) - M;'w(a:)‘ < LthN’ Vo € Q,

and (]\’Z;N)Nw = ]\ZTNw.

The main interest in considering this infinitesimal
operator is that we have the following approxima-
tion :

Theorem 12.

lim (M;N)NZ h=v".

N —oco

PROOF. We have, for any = € 2,

()" 1) ) -

£a[£]
sup inf max h t
aeF(oN)EeZ(oN) 1,..,N ( (z))
LMy
< sup  inf  sup A(ySl(n) + 2L
el (0,N) §€Z(0,N) r¢[o,N) ( 0,z (1)) N

= V+( ) +Lth/N
Taking the limit, we obtain
— N2 _
lim [(M;N) h} (z) =V (2). O

N—00

This leads to the following algorithm :



wo(.) = h(.)
wy(.) = Unvw,—1(0,.), € [1,N?]

where Unyw is the unique viscosity solution in
BUC(]0,1/N] x ) of the Isaacs equation :

8UNU}
5t (t,x) —}—I;élélrnneaxv Unw.f(x,z,m) =0,
w(z)},

Unw(1/N,z) = max{h(z),
when w € BUC([0,1/N] x ). Then, for large N
—~ N?
w2 = (Ml/N) h

provides an approximation scheme of the (semi-
. . —t
continuous) function V.

Remark 13. The iterations of the operator Ml/N
can be computed using known numerical schemes
for Lipschitz solutions of standard Isaacs equa-
tions (see for instance Appendix A of (Bardi and
Capuzzo-Dolcetta, 1997)).

5. AN EXAMPLE

We study an example, for which the value function
and the iterations of the operator M,y can be
determined analytically.

Consider the robust control of a second order
servo-mechanism (see the study in (Bernhard et

al., 2001)) :
x :f(xauav):<22y_au) I:]L||§]]:
z(0) = xo

where the criterion is :

J(xo,u(.),v(.)) = inf h(z(t))

>0

with h(z) = v — |z1|. The parameters a, 8 and
~ are positive numbers. The Hamiltonian of the
system is :

H(x,\)

min max Af(z, u,v)
u v

max min \f(z, u, v)
—alAi] + BlAz| + Az,

It has been proved in (Bernhard et al., 2001) that
this game admits a value :

V(z) =V (z) =V*(z) =
min(y + z1, PT(x))

min(y — @1, P~ (x))
min(y — o?/B, P (z), P (z)) when |z2| < a

when z5 > «

when o < —«

(22 + )
23

(22 — a)?

2p

Pr(x)=n—x —
with
P (z)=v+4+uz —

which is a continuous viscosity solution of the
variationnal inequality

min (h(z) — V(z), H(z,VV(z))) =0 (9)
Notice that the uniqueness of continuous viscosity
solutions is not guaranteed for such p.d.e. (see
(Rapaport, 1998) for counter-examples).

It can be easily shown recursively that the unique

solution Unwy, of the Isaacs equation (8) is :

Unw,,(t,x) = min <'y % m1n ) <%,t,x>)

where ¢(7,t,2) =

g 2

— |z + z2(r —t)| —a(r —t) +

After some calculations, we obtain :

042

wy2(z) = min <fy— 35

e 2
. n (Bit /N — a — x3)
min P a) + S

. _ (Bi= /N — a + x2)?
- SN Po(@) + 23 ) '

and then
= 1 m =
V(x) N 1+ wyz(T)

min(y + ml,P+($)) when z, > «
min(y — z1, P~ (z)) when z» < —a
min(PT (z), P~ (z)) when |z2| < «

We see on this example that V does not coincide
with V. Although V is continuous, it can be also
checked that it is not a viscosity solution of (9).

6. CONCLUSION

According to the example of section 5, we con-
clude that, in general, the infinite horizon game
problem cannot be approximated by a sequence
of finite horizon game problems. This leads to the
following open questions :

(1) Under which conditions we have V' = V+
and V. =V~7?

(2) The uniqueness of (generalized) solution of
the Isaacs equation is a classic tool to prove
that V* > V—, in differential games (see
for instance (Bardi and Capuzzo-Dolcetta,
1997)). Can we prove it directly for maximum



cost differential games, or does there exist an
example, for which this inequality is not true
(in infinite horizon) ?

(3) Under which conditions we have in the in-
finite horizon case VT = V=7 Can we find
an example where the Isaacs condition is
satisfied but with V* #£ V7
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