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Abstract: An improved delay-dependent H, filtering design is proposed for linear,

continuous, time-invariant systems with time delay. The resulting filter is of the

Luenberger observer type and it guarantees that the H, -norm of the system, relating

the exogenous signals to the estimation error, is less than a prescribed level. The

filter is based on the application of the descriptor model transformation and Park’s

inequality for the bounding of cross terms. The advantage of the new filtering scheme

is clearly demonstrated via simple examples. Copyright C 2001 IFAC
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1. INTRODUCTION

The H, filtering problem for linear systems with
delay-dependent (see Fattou et al., 1998 and Pal-
hares et al., 2000) and (more conservative) delay-
independent (see Ge et al., 2000 and Mahmoud,
2000) designs have acquired a lot of attention
recently. The prevailing methods are based on
bounded real lemmas (BRLs) in terms of Riccati
algebraic equations or Linear Matrix Inequalities
(LMIs) which guarantee a prescribed attenuation
level. Unfortunately, these criteria provide only
sufficient conditions for the required attenuation
and they may lead, in many cases, to conservative
filter designs.

Recently, a new approach to H, filtering has been
introduced (Fridman and Shaked, 2001a). This
approach is based on representing the system by
a descriptor type model (see Fridman, 2001 and

Fridman and Shaked, 2001b) and on deriving a
BRL for the corresponding adjoint system. The
new BRL was found to be very efficient and it
considerably reduced the achievable attenuation
level as compared to other results reported in the
literature. By assuming a Leunberger type esti-
mator, the new BRL was applied to the resulting
estimation error system and provided the best
filtering estimates. In spite of the advantage of
the new filter design, it still entails a significant
amount of conservatism stemming from the over-
bounding of mixed terms in the proof of the BRL
in (Fridman and Shaked, 2001a).

A new over-bounding technique has recently been
proposed that produces tighter bounds (Park,
1999). In the present note, this technique is ap-
plied to reduce the over-design entailed in the
approach of (Fridman and Shaked, 2001a). The
treatment is also extended to the more general



class of neutral type systems with multiple delays.
It is shown, via simple examples, that the result-
ing schemes dramatically improve the estimation
results.

Notation: Throughout the paper the superscript
‘T’ stands for matrix transposition, R™ denotes
the n dimensional Euclidean space, R™*™ is the
set of all n x m real matrices, and the notation
P >0, for P € R™*"™ means that P is symmetric
and positive definite. The space of functions in R?
that are square integrable over [0 o00) is denoted
by £2[0, o).

2. PROBLEM FORMULATION

Consider the following system:
z— Fi(t — g) = Apx+A1z(t — h)+ Bw,

z(t) =0,Vt <0, (1)

where z(t) € R" is the system state vector and
w(t) € LI[0, oo] is the exogenous disturbance
signal. The time delays h > 0, g > 0 are assumed
to be known. The matrices Ag, A1, F and B are
constant matrices of appropriate dimensions. For
simplicity only one delay is considered, however,
the results can easily be generalized to any finite
number of delays.

It is assumed :

A1 All of the eigenvalues of F' are inside the unit

circle.
Given the measurement equation
y=Cxz + Dyw (2)

where y(t) € R" is the measurement vector and
the matrices C and D,; are constant matrices
of appropriate dimension, a filter of the following
Luenberger observer form is sought:

i—Fi(t—g)= Aoz +A1i(t—h)+K(y—Cz) (3)

This filter must ensure that the performance index

= [T 2=y wTw)dr (4)

is negatlve Vw(t) € L3[0, oo], for a prescribed

value of . The signal z(t) € RP is the state
combination to be estimated and is given by:

22 L(z — %) (5)

where L is a constant matrix.

3. DELAY-DEPENDENT H, FILTERING

From (1)-(3) it follows that the estimation error
e(t) = z(t) — Z(t) is described by the following
model

e—Fé(t—g) = (Ao—KC)et Are(t—h)

+(B—KD21)'LU, z = Le. (6)

The problem then becomes one of finding the filter
gain K such that the Hy
(6) will be less than a prescribed value of ~.

-norm of the system of

3.1. H,,
Using the arguments of (Fridman and Shaked,
2001a) it can be shown that the Ho,
system described by (6) and the following system

-norm of the ‘adjoint’ system.
-norms of the

are equal:
E—FTE(r—g)= (A5 —~CTKT)E+ATE(T—h)
+LT3, &(1) =0, Vr <0
w = (BT — DL KT)¢. (7)
where £(t) € R™, 2(t) € RP and w(t) € RI.
Note that the latter system represents the forward
adjoint of (6) (as defined in (Bensoussan, 1992).

For the equivalent descriptor form representation
of (3a):

£=¢, 0=—<+FT<(t—g) (Bimo A7 ~CTKT)E

—AT f  nC(s)ds + LTz,
the following Lyapunov- Krasovsku functional has
been suggested in (Fridman and Shaked, 2002) :

V=i e |5 |
+ [, €1 (M) SE(rydr + [, T (R UG(r)dr
L a0 AR 42 | coraras, 9

where

E=[%0] P=[n s}, PLUSE>0 (9)

The first term of (8) corresponds to the descriptor
system (see e.g. (Takaba et al., 1995 and Ma-
1997), the third - to the delay-
independent conditions with respect to the dis-

subuchu et al.,

crete delays of ¢ , while the second and the fourth
terms - to the delay-dependent conditions with
respect to the distributed delays.

Based on a similar functional, a BRL was de-
rived in (Fridman and Shaked, 2001a) which pro-
vided an LMI sufficiency condition for the H, -
norm of (3) to be less than . This condition,



though still efficient compared to other meth-
ods in the literature, is still conservative, due to
the bounding of a mixed term in the proof of
the BRL in (Fridman and Shaked, 2001a). Re-
cently, an improved BRL was proposed by (Frid-
man and Shaked, 2002), which considerably re-
duces the over-design entailed in the over bound-
ing of the above mixed term. It is based on
the fact that for any 2n x 2n-matrices R > 0
and M, the following holds (see Park, 1999):
-2 f:ﬁh bT (s)a(s)ds <

for a(s) € R*™, b(s) € R?", and for a given
s€[t—h,t]. Here Y £ (MTR+I)R-Y(RM +I).

In the proof of the BRL in (Fridman and Shaked,
2001a), M = 0 was chosen. Taking M # 0
the following result is obtained (see Fridman and
Shaked, 2002):

Lemma 1. Consider the system of (6). Given y >
0 and K € R™*", the cost function (4) achieves
J(w) < 0 for all nonzero w € LI[0, o) and for
all positive delay g, if there exist n x n-matrices
0< P, P, P3, S, U and 2nx2n-matrices W, R
that satisfy the following LMI:

T 0 | O | O B—K D2,
i R P R Ve

x  —72I 0 0 0 0
* * —hR 0 0 0
* * * 0 0 0 <0(11)
* * * -S 0 0
* * * * -U 0
* * * * * I

where P is given by (9) and

o=wT+pP7,

A LT 0 I 0 Bj_oA:i—KC
¥=pr [2}=0AiT—cTKT —I] + [I T ]P
o 0 00 0A

T 1
1o v aur &) | TV [A{ 0]+[0 O]W

Remark 1. For

I,
W=-P, R=52

: (12

the LMI of (11) produces for e — 0% the following
BRL condition that is delay-independent:

. | O [ O | O B—K D21
v or| ] L] L] [
2 0 0

* —y°I

<0
* * -S 0 0
* * * -U 0
* * * * —1I,

I — pT 0 I 0 Ag—KC S o0
G=PT| o orpr L]0 P+]D 0

3.2. The case of instantaneous measure-
ments

Restricting the discussion to the case of W; =
€ P, i = 1,2, where ¢; € R is a scalar parameter,
enables the formulation of an LMI. Note that for
¢, = 0, LMI (11) implies the delay-dependent
conditions of (Fridman, 2001) and (Fridman and
Shaked 2001b), while for ¢; = —1, LMI (11) yields
the delay-independent condition of Remark 1. It is
obvious from the requirement of 0 < P;, and the
fact that the (2,2) block in ¥ is negative definite,
that —(P; + PJ') must be negative definite, and
thus P is nonsingular. Defining

Q1 0

1A _
Pr=e= [Qz Qs

A,
| 22 diog@. Tyspinad 19
LMI (11) is multiplied by AT and A, on the left
and on the right, respectively. Applying Schur’s

formula to the quadratic term in @, the following
inequality results:

« (3] wren {] (3] o5
* —2I, 0 0 0 0
* * —hR, 0 0 0
* * * -S 0 0
* * * * -U 0
* * * * * -1,
* * * * * *
* * * * * *
| * * * * *
[Q1] I:Qg] h[o QgA1]'
0 Qs 0 Qg Ay
0 0 0
0 0 0
o 0 o |<0 (14)
0 0 0
-s™' o 0
*  —U! 0
* * —hR™
where

(1]

—_ 0 In T| O *
- [):}=0A3"+eA1T—CTKT —In]Q+Q [In 71,1]'
Denoting Q1 K by Y, we obtain the following:

Theorem 2. Consider the system of (1) and the
cost function of (4). For a prescribed 0 < 7,
J(w) < 0 for all nonzero w € L30,00) if
for some prescribed scalar e, there exist Q1 >
0, S, U, Q2, Q3,€ R™™ R € R*™** and
Y € R™*" that satisfy the following LMI:



[ Q2+ Qs N 0 h(e+1)R1 h(e+1)Ra
*  —Qs—Q; LT h(e+1)R; h(e+1)Rs
* P 0 0
* * 0 —hR; —hR2
* * * * —hR3
0 Qi QB-YDy 0 @3 0 hQJA]
eATS 0 0 FU QT 0 hQTa,
0 0 0 0 O 0 0
0 0 0 0 O 0 0
0 0 0 0 0 0 0
0 0 0 0 O 0 0
0 0 0 0 O 0 0
3 0 0 o 0o o o |9
x -8 0 0 O 0 0
* * —I 0 O 0 0
ko x * -U 0 0 0
ok * x =U 0 0
* * * x % —hR, —hRs
x * x x % x*  —hR3 |

where Ry, Ry and Rs are the (1,1), (1,2) and
(2,2) blocks of R, respectively, and where

E1 = Q3—Q5+Q1(Ao+ A1 +€Ar) —YC.
The filter gain is then given by

K =Q7'Y.

Note that in the latter LMI S, U and R are the
inverses of S, U and R of (14), respectively. If this
LMI possesses a solution for A > 0 then, because
of the special dependence of its matrix entries on
the delay length, it will also posses a solution for
all 0 < h < h.

The result of the Theorem 1 is applied to the
following example.

Example 1: Consider the same system as found
in (de Souza and Lee, 1999) to which a state-
feedback has been applied. Assuming that the
measurement equation is the same as in (2), an
observer which achieves a minimum estimation
level is sought. The matrices corresponding to (1),
(2) and (5) are as follows:

00 -1 -1 10
AO_[O 1]’ Al_[ 0 —.9]’ B_[l 0]’

L=[10],C=[01], Dy =.01, h = 0.999 secs.

Note that the system is unstable. Using the
method of (Fridman and Shaked, 2001a), a min-
imum value of v = 22.8784 was obtained with a
filter gain matrix of K = [4790 18139]" .

On the other hand, applying Theorem 1, for h =
0.999 seconds, a minimum value of v = .0823
was achieved by using ¢ = —0.28. The resulting
filter gain was K = 10% [6.158 6.1594]" . Further-
more, while it was impossible to obtain a solution
for h > 1, using the method of (Fridman and
Shaked, 2001a), it was found that, by applying
the LMI of Theorem 1, a solution for all h <
1.295 was available. For, say, h = 1.25sec. and
e = —0.33, a minimum value of v = 0.61, with
K =10 [2.2354 2.2358]" was obtained.

3.3. The case of delayed measurements
The above results were obtained for the case where
no delay is encountered in the measurement. In
case the measurement includes delayed state in-
formation of the form:

y = col{Coz, Crz(t — h)} + Dayw, (15)

where Cy € R™*™ and C € R™*™ are constant
matrices and r; +r3 = r, an additional component
is placed in series with the delayed component
of y. The state space model of this component
is given by:

n=—pl,n+1[0pl,]y (16)

for 1 << p. Denoting the augmented state vector
by & = col{z, n}, the augmented system is then
described by:

§—Fé(t—g) = Age+Ai£(t—h)+Bw (17)

where

A 0 1 : [A 0]  [F
A"‘[o —pITz]’Al‘[pclo]’F‘[O]

~ B
and B = .
! |:p[0 IT2]D21:|
The following augmented filter is considered:
é—ﬁ’é(t—g):fioé+&-§(t—h) o
+K (col{[Ir, Oly, n} — C¢) (18)



N
M)

where C' = diag{Cy, I,}.
The resulting estimation error vector is denoted

by é(t) = £(t) —&(t) with the following state space

representation:

é—Fé(t—g)=

(Ag—KC)e+Ae(t—h)+Bw — K [{;1 g]Dﬂw.
Letting 2 = L&, L =[L 0] and considering

I = [ ET =y wTw)dr (20)
one could apply Lemma 1 to obtain K via an LMI
that corresponds to the one in Theorem 1. The
problem is, however, that due to the O(p) entries
in A and B the restriction of W = €P, € € R,
which was made in order to obtain the LMI of
Theorem 1, forces € to be O(p~!) and thus the
solution that will be achieved for this scalar ¢ will
tend to the one obtained in (Fridman and Shaked,

2001a).

In order to utilize the extra freedom provided by
Park’s over-bounding method, diagonal matrices
&; are sought that satisfy W = £P. Denoting

€ = diag{é1, &2}, EER™", n=n+r

and applying the method of Section 3.2, results in
the following theorem:

Theorem 3. Consider the system of (17), (15) and
(18) and the cost function (20). For a prescribed
0 <~ andfor p >> 1, J; < 0 for all nonzero
w € LI[0, oo) if for some prescribed diago-
nal matrices &, & € R™*" there exist @, >
0, S, U, @2, Q3 € RﬁXﬁ, R € R?>™2% and
Y € RA+1)XT that satisfy:

[ Q2 +Qg =1 0 h(é&1+Iz)R1 h(&1+ In)Ro
* —Q3—QF L"T h(e2+Is)RY h(ea+In)Rs
* * 7'7219 0 0
* * 0 —hR; —hRo
* * * * 7hR3
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
L * * * * *
7 I, 0 T T 7
0 Q1 QlB—YI:O 1 0]D21 0 > 0 hQ; Ay
ATS o 0 FU QT o nQiA
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 o 0 <0
-5 0 0 0 0 0 0
* -S 0 0 0 0 0
* * —1I, 0 0 0 0
* * * -U o 0 0
* * * * U 0 0
* * * * x —hR1 —hRs
* * * * * * —h _3

where R;, R, and R3 are the (1,1), (1,2) and
(2,2) blocks of R and

E1=Qs—Q5
The filter gain is then given by

1(2,}:0141 + Algg) —Yé

K =Q7'Y.

Remark 2. The problem of choosing €;, i = 1,2
is now more involved. One way to reduce the
complexity is to choose zeros for those diagonal
elements of € that correspond to the O(p) ele-
ments in A; and the same scalar for all the other
diagonal elements in €;, ¢ =1, 2.

The existence of a solution to the LMI of Theorem
2 guarantees that the filter built from the series
connection of (16) and (18) will achieve the re-
quired performance as long as 0 < p. Considering,
however, 1 << p and denoting

o Koo Kot

K= [Km Ku] ’

it follows from Theorem 2 that if the LMI is
feasible, then the estimate of x(t) is given by:

i—Fi(t—g)=Aod+A;#(t—h)
+Koo([Ir, Oly—Cot) + Kor(n —n)-

When 1 << p and r; = 0 (namely, when all of the
measurements are delayed) the latter equation,
together with the one obtained from (18) for 7,
lead to the following filter:

& — Fi(t — g) = Apd+A;i(t — h)

+K(y(t—h)—Ci&(t—h)) + ¢
where
K = (pI, + K11)"'pKo1 + O(p™")
and where ¢ = O(p~!,s). The latter filter, with
¢ = 0, will achieve the required estimation accu-
racy if p is chosen to be large enough.

The use of the results of Theorem 2 are demon-
strated by the following example:

Example 2: Consider the system of Example
1 with a delay h = 0.9sec.. The measurement
equation is as in (15) with

Co=0, C; = [0 1] andro =7 =1.

This example was solved in (Fridman and Shaked,
2001a) where, for p = 10'°, a minimum value



of v = 128.406 was obtained for the gain ma-
trix K = [—0.84500.2045]". Applying the re-
sult of Theorem 2, for € = —0.2213 and & =
diag{—.28, 0, 0}, a minimum value of v = 51.67
is achieved for K = [ —0.90540.2089]" . Taking
€& = diag{—0.22, 0, 0},as was suggested in Re-
mark 2, a slightly higher minimal value of v =
54.45 is obtained with K = [ —0.9166 0.2094]" .

4. CONCLUSIONS

A solution to the problem of H, filtering for lin-
ear, continuous, time-invariant systems with time
delay has been presented. The solution procedure
is based on applying an observer type filter and
it provides a sufficient condition for achieving a
prescribed estimation accuracy. Since the results
are only sufficient, the question arises as to how
large an over-design is entailed in this method
and whether or not it is smaller than the one
encountered in other designs appearing in the
literature. To answer this question one has to bear
in mind that the filter designs are based, one way
or another, on a related BRL that provides the
sufficient condition for a system with delay to
possess an H, -norm that is less than a prescribed
value. The over-design of the corresponding filter
design approach will therefore strongly depend on
the conservatism of the BRL used. In this note,
the BRL utilized, is, in our opinion, the least con-
servative of all the other finite dimensional BRLs
appearing in the literature, and therefore provides
the best filtering solution so far published.
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