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Abstract: The paper presents a solution to the pursuit problem under the presence
of bounded (non-stochastic) errors in state measurements for the evader and under
uncertain evader’s controls bounded within the given compact set. It also provides
the worst-case solution conditions, meaning the the worst-case evader’s controls
and observation errors, and the methods aiming for fulfillment of these conditions.
Finally, we calculate the worst-case estimate for the number of discrete-time steps
(observations) required for bringing the pursuer in the given neighborhood of evader.
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INTRODUCTION

A number of publications (see particularly
(Fredman, 1971; Hajek, 1975; Krasovski and Sub-
botin, 1988b; Pontryagin and Mishchenko, 1986;
Hagedorn et al., 1977; Krasovski and Subbotin,
1988a; Pshenitchnyi and Ostapenko, 1992; Ols-
der, 1995; Chikrii, 1997)) are devoted to analysis
of approach (pursuit and evasion) processes for
conflicting moving plants. The control synthesis
problem for a pursuit-evasion process, which is
complicated in itself, becomes even more com-
plicated as measurements of phase states of the
players are affected by uncertain errors. In the
known publications except the paper (Kuntsevich
and Pshenitchnyi, 1995), this problem is analyzed
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under the common assumption that observation
errors are random values independent on systems
dynamics and having a priori known probabilistic
properties. However, the hypothesis on statistic
nature of observation errors is not applicable gen-
erally, particularly it is not applicable when er-
rors (disturbances) are known to be dependent on
phase coordinates (states) of the moving plants.
This is particularly true for the cases of 3-D mea-
surements in the air with the radio aids and un-
der water with the acoustic instrumentation since
measurement errors are the larger in these cases
the longer is the distance between the players.
Obviously, the statistic hypothesis is not appli-
cable as observation errors are a priori estimated
by sets (see (Chernousko, 1994; Kurzhanski and
Vályi, 1997) and (Walter and Pronzato, 1997, Ch.
5.4)).

The present paper continues the investigations
of (Kuntsevich and Pshenitchnyi, 1995) and uti-
lizes the definitions (particularly of a minimal
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invariant set) and theorems found in (Kuntsevich
and Pshenitchnyi, 1996; Kuntsevich and Pshen-
itchnyi, 1998). It is devoted to solution of the
pursuit-evasion problem for two controllable mov-
ing plants under uncertainty conditions which
are (i) uncertain evader’s controls and (ii) un-
certain observation errors dependent on pursuer’s
and evader’s states. In other words, the pursuit-
evasion problem is solved for the worst-case sce-
nario, meaning the evader takes optimal (and un-
known for the pursuer) controls from the given
bounded set and the observation errors are least
favorable for the pursuer. The authors failed to
find a single publication (except (Kuntsevich and
Pshenitchnyi, 1995)) concerning solution of the
problem stated this way.

1. THE PURSUIT PROCESS UNDER
UNCERTAIN DISTURBANCES

The pursuit process will be considered further in
discrete time, meaning discrete-time state mea-
surements and controls for the both players.

Consider in the state space Rm the coordinate vec-
tors x and y for the pursuer and the evader respec-
tively. Assume that these vectors are measured at
discrete time instances tn = nτ , where τ is the
discretization period. Assume also that the values
xn are measured error-free and the measurements
of yn are affected by additive observation errors
(disturbances) fn:

zn = yn + fn, n = 0, 1, . . . , (1)

where zn is the measured state of the evader at
the discrete-time instance n.

We also assume hereinafter that observation er-
rors fn are norm-bounded and the upper-bound
estimate depends on the current distance between
the evader and the pursuer:

fn ∈ fn = {fn : ‖fn‖ ≤ λ ‖en‖} , (2)

where

en = yn − xn (3)

and

0 ≤ λ < 1.

The constraint λ < 1 is obviously fulfilled in
practice, otherwise it would not be possible to
locate the evader with an appropriate precision
and the pursuit problem would not be solvable.
It is also worth to note that one can use any
particular norm in (2), since this does not affect
the analysis presented below.

Assuming that controls un and wn are constant
within time intervals of the length τ , describe the
motion of the players xn and yn, n = 0, 1, 2, . . . ,
by the following difference equations,

xn+1 = xn + τun, (4)

yn+1 = yn + τwn. (5)

Obviously, the controls (velocities) un and wn are
bounded. Without loss of generality, assume that

un ∈ u = {u : ‖u‖ ≤ 1}, (6)

wn ∈ w = {w : ‖w‖ ≤ β}. (7)

Further, constant β will be assumed to satisfy the
constraint β < 1. This means that the pursuer has
a certain advantage in speed against the evader. In
other conditions, the pursuer would not be able to
approach the evader and the respective problem
statement would be senseless.

From (3), (6) and (7), it is easy to obtain the
equation for the reduced system:

en+1 = en + τ(wn − un). (8)

Next, one needs to calculate the estimate ẽn

of the vector en, which depends on measurable
coordinate vectors xn and zn. Obtain from (3) and
(1) the expression for ẽn:

ẽn = zn − xn = en + fn (9)

and the norm bounds:

‖ẽn‖ ≤ (1 + λ) ‖en‖ . (10)

The set estimate for fn(en) is expressed in terms
of unknown (exactly) en. Therefore, it is also
needed to introduce the upper-bound estimate
f̃ (ẽn) for fn(en) with the following properties,

‖fn(en)‖ ≤ ‖f̃n(ẽn)‖ ≤ λ‖ẽn‖ ≤ λ(1 + λ)‖en‖.
(11)

By virtue of (9) and (11), the set-valued estimate
en for en (which is expressed in measured values)
is as follows,

en ∈ en = zn − xn − f̃n,

where

f̃n =
{
f̃n : ‖f̃n‖ ≤ λ(1 + λ)‖zn − xn‖

}
. (12)

Synthesis of control un requires using a point
estimate of vector en ∈ en. Let us calculate this
point estimate

?
en as a solution to the following

minimization problem,

min
?
en

{∥∥∥en −
?
en

∥∥∥ =
∥∥∥ẽn − f̃n −

?
en

∥∥∥}
. (13)

The problem formulation (13) includes the un-
known exact value of error vector f̃n, which has
to be substituted with its worst-case set-valued
estimate f̃n. Consequently, the problem (13) takes
the form of minimax problem

min
?
en

max
f̃n∈f̃n

∥∥∥ẽn − f̃n −
?
en

∥∥∥ . (14)



Lemma 1. Vector
?
en = ẽn

is the solution to the problem (14).

Proof. Consider the “internal” maximization
problem of the objective function (14) for a par-
ticular value of

?
en. Recall that errors can take

their values within the solid hyper sphere (12).
Obviously, maximum of the objective function
is reached if (i) the vector f̃n has the maximal
feasible norm, i.e., it belongs to the boundary of
set (12), the hyper sphere, and (ii) f̃n is collinear
with the vector

?
en − ẽn.

Consider the “external” minimization problem.
If

?
en 6= ẽn, then one can always increase the

objective function over the maximal value of ‖f̃n‖
by choosing f̃n as it is described above. Only
with

?
en = ẽn, the objective function reaches its

minimum which is equal to the maximal value of
‖f̃n‖, i.e., λ(1 + λ) ‖zn − xn‖. 2

2. CONTROL OF THE PURSUIT PROCESS

Consider now calculating the control un as func-
tion of

?
en = ẽn.

Remark 1. Concerning controls wn, we shall be
assuming that wn ∈ w and nothing else. We shall
not be interested also in the strategy of choosing
controls wn as a strategy aiming for evasion of
the system (5) from the system (4). We shall be
concerned in the motions of the system (5) as soon
as they will affect the approaching process of the
two systems (4) and (5).

It is appropriate to calculate the control un as
minimizer for the right-hand side of the equation
(8). Since the value wn is known to the extent
of its set-valued estimate, the optimal control
synthesis problem takes the minimax form:

min
un∈u

max
wn∈w

‖en − τun + τwn‖ . (15)

It is easy to see that the control

wn = β
en

‖en‖
(16)

is a maximizer for the problem (15). The mini-
mizer for (15) is

un =
en

‖en‖
. (17)

The optimal controls (16) and (17) are trivial: the
pursuer makes every effort to catch the evader by
moving with the maximal speed in the direction
of the evader, and the evader tries to escape by
moving in the same direction with the highest

possible speed. According to the stated objective,
one has to assume that the evader knows the exact
coordinates xn of the pursuer and his own exact
coordinates yn, therefore, the evader knows the
exact vector en and the optimal control (16). In
contrary, the pursuer does not know the exact
coordinates yn of the evader and consequently he
has to use the estimate ẽn (9) of vector en (see
Lemma 1) when calculating the control un:

un =
ẽn

‖ẽn‖
=

en + fn

‖en + fn‖
. (18)

The control un (18) was applied in (Kuntsevich
and Pshenitchnyi, 1995), where it was postulated
without referring to solution of the minimax prob-
lem (15).

Substitute the expression (18) into (8) and obtain
the equation

en+1 = en − τ
ẽn

‖ẽn‖
+ τwn. (19)

2.1 The case of error-free measurements

With the aim of analyzing the main features
of the approaching process for two controllable
plants, particularly those features induced by the
discrete-time model for measurements and con-
trols, consider first the system (19) for the case of
error-free measurements, i.e., for λ = 0 and con-
sequently f(·) = ∅. The equation (19) is reduced
to the following one,

en+1 = ψ(en) + τwn, (20)

where

ψ(en) = en − τ
en

‖en‖
. (21)

For a while, assume wn = 0, i.e., w = ∅, and
analyze the system (21), which takes the following
form under the assumption made,

en+1 = ψ(en). (22)

Determine the conditions providing that the vec-
tor function ψ(·) realizes a contracted mapping,
meaning the following inequality takes place,

‖ψ(en)‖ =
∥∥∥∥en − τ

en

‖en‖

∥∥∥∥ < ‖en‖ . (23)

To avoid certain difficulties, which are specific for
analysis of the vector function ψ(·) at ‖en‖ → 0,
let us exclude from our consideration a sufficiently
small µ-neighborhood of the origin. Further, with-
out mentioning this every time, we shall be ana-
lyzing the system (19) and its modifications (20)-
(21) and (22) only for

‖en‖ ≥ µ, µ = const, (24)



assuming that one applies the linear control un =
γẽn as soon as ‖en‖ < µ. In this case, equation
(19) transforms in the equation

en+1 = en − γτ ẽn + τwn. (25)

The case of infinite ‖e0‖ is impracticable, there-
fore we require hereinafter the condition ‖e0‖ ≤ ρ,
where ρ is a given constant. Use the notation E
for the set {e : ‖e‖ ≤ ρ}.

The inequality (23) is easily transformed to the
following one,

|(‖en‖ − τ)| < ‖en‖ . (26)

The inequality (26) is fulfilled under the condition

0 < τ < 2‖en‖. (27)

Therefore, for any set E (with arbitrary finite ρ)
in the space Rm and under the condition (27), the
vector function ψ(·) is Lipschitzian with Lipschitz
constant c < 1, i.e.,

‖ψ(en)‖ ≤ c ‖en‖ . (28)

According to (Kuntsevich and Pshenitchnyi, 1996;
Kuntsevich and Pshenitchnyi, 1998), if the con-
dition (28) is fulfilled for some constant c < 1
and the set w is bounded, the system (20) has a
minimal invariant set M, meaning the inclusion
en ∈ M, leads to the inclusion en+1 ∈ M. (An
invariant set is minimal if it does not include any
other invariant sets.)

For the considered case, the values of function
ψ(en) are known only to the extent of the upper-
bound estimate (28), hence one cannot calculate
exactly the set M. On the other hand, as it has
been proven in (Kuntsevich, 1998; Kuntsevich and
Kuntsevich, n.d.), one can calculate the upper-
bound estimate for the radius

r(M) = max
en∈M

‖en‖

of minimal invariant set M as one knows the
upper-bound estimate for the vector-valued func-
tion ψ(en). (The radius of a minimal invariant
set is analogous to the dispersion for statistically
described (random) observation errors.)

For the convenience, we present here Theorem
1 of the paper (Kuntsevich, 1998) (see also
(Kuntsevich and Kuntsevich, n.d.)).

Theorem 1. (Kuntsevich, 1998) The upper-bound
estimate of the radius of minimal invariant set
of the system (20)-(21) for arbitrary compact
set E and the Lipschitzian vector function ψ(en)
(with Lipschitz constant c < 1) is defined by the
inequality

r(M) ≤ τβ
∞∑

k=0

ck =
τβ

1− c
. (29)

In conclusion for the considered simplest case
(error-free measurements), one can only ensure
the existence of a bounded invariant set for the
disretized model of measurements and controls
(discretization is inevitable for practical appli-
cations). The dimensions of this set depend on
the discretization period τ . One can secure the
required approach distance between the pursuer
(4) and the evader (5) by the respective choice of
τ with any feasible controls of the evader.

2.2 The case of measurements with errors

Consider now the system (19) with f 6= ∅. Primar-
ily, define the conditions, under which the vector
function

ϕ (en, fn, wn) = en − τ
en + fn

‖en + fn‖
+ τwn (30)

realizes a contracted mapping for wn ∈ w, i.e.,
the following inequality is fulfilled,

‖ϕ (en, fn, wn)‖ < ‖en‖ . (31)

Aiming to obtain the worst-case solution, meaning
for any feasible fn ∈ f and wn ∈ w, consider the
problem

max
fn∈fn, wn∈w

‖ϕ (en, fn, wn)‖ , (32)

which we intend to solve analytically.

Analyze the “worst” strategy of the evader (in
view of the pursuer’s objective), which is the
choice of control (16) at each step n. (Recall that
the evader presumably knows the exact value of
en and the pursuer has to rely on its estimate
ẽn.) Rewrite the expression for ϕ(·) by taking into
account the optimal control (16) for the evader:

ϕ (en, fn) = en − τ
en + fn

‖en + fn‖
+ τβ

en

‖en‖
.

Instead of solving the problem (32), consider so-
lution of the reduced problem

max
fn∈fn

‖ϕ(en, fn)‖ . (33)

Maximize the function ϕ2(·) = ϕT (·)ϕ(·), which
is

ϕ2(·) = (‖en‖+ τβ)2 + τ2 − (34)

2τ (‖en‖+ τβ)
eT
n (en + fn)

‖en‖‖en + fn‖
,

with respect to fn ∈ fn. The first two items
in the right-hand side of the expression (34) are
obviously positive. The third item is negative due
to the positiveness of all multipliers, which this
item consists of, particularly, the inner product
eT
n (en + fn) is positive by virtue of the definition



of set fn (2). Hence, the expression (34) reaches
its maximum at the minimal value of the function

ξn(fn) =
eT
n (en + fn)
‖en + fn‖

for the set fn, equivalently, maximum is reached
at the maximal feasible angle between the vectors
en and en + fn. This angle is maximal as soon as
the following two conditions are fulfilled,

(i) the vectors fn and en+fn are orthogonal and
(ii) ‖fn‖ = λ‖en‖.

Condition (i) provides the following equalities,

‖en‖2 = ‖fn‖2 + ‖en + fn‖2,

fT
n (en + fn) = 0.

Make use of these equalities and condition (ii)
for obtaining min{ξn(fn) : fn ∈ fn}. Omitting
few simple transformations, express the required
maximum as follows,

max
fn∈fn

ϕ2(en, fn) = (35)

(‖en‖+ τβ)2 + τ2 −

2τ
√

1− λ2 (‖en‖+ τβ) .

Next, find the range of values τ , for which the
vector function ϕ(·) realizes a contracted map-
ping, i.e., the range of values τ that ensure the
fulfillment of inequality (31). With this aim in
view, raise (31) to the second power and substitute
ϕ2(·) with its maximum (35). Resulting from this,
find the upper-bound estimate for τ .

Lemma 2. With τ in the range

0 < τ < 2‖en‖
√

1− λ2 − β

1 + β2 − β
√

1− λ2
, (36)

the vector function ϕ(·) (30) satisfies the condition
(31), i.e., it realizes a contracted mapping.

Remark 2. Substitution of the values λ = 0 and
β = 0, which correspond to the above-considered
simplest case of error-free measurements and
evader’s static position, into the right-hand side
of the inequality (36) results in obtaining the
inequality (27), which presents a particular case
of (36).

The upper-bound constraint (36) for τ determines
also the corresponding upper bound for the value
β which defines the dimensions of set w. In fact,
the value

√
1− λ2 − β must be positive, hence

β <
√

1− λ2. (37)

Remark 3. Aiming to satisfy the condition (37)
in the case the inequality is not fulfilled, one

has no other options but decreasing λ, meaning
enhancement of the accuracy of measurements of
the evader’s coordinates.

Assume now that the inequality (36) is fulfilled
and consequently the condition (31) is satisfied,
meaning the function ϕ(·) is Lipschitzian (with
Lipschitz constant c < 1) in arbitrary compact
set E:

‖ϕ(en)‖ ≤ c ‖en‖ . (38)

The boundedness of the vector function ϕ(·) (38)
and the boundedness of the set w provide the
existence of a bounded invariant set for the system
(19). The upper-bound estimate of the radius of
minimal invariant set is equivalent to the estimate
(29) to the extent of constant value c. As it results
from (29), this estimate is directly proportional to
the discretization period τ and it decreases with
the decrease of λ, i.e., with the enhancement of
accuracy of measurements of yn.

The final stage of analysis of the system (19)
is calculation of the worst-case estimate for the
number N of discrete-time steps (observations)
required for bringing the pursuer, which is initially
positioned at the distance ‖e0‖ from the evader,
in the given ε-neighborhood of the evader, i.e.,
the number of steps N required for satisfying the
condition ‖eN‖ ≤ ε. Since we assume as above
that the optimal pursuer’s strategy is the choice
of control un = ẽn/‖ẽn‖ and the optimal evader’s
control is wn = en/‖en‖ for the step n, the lower
bound for ‖en‖ − ‖en+1‖, which is the decrease
of distance between the players, for the step n is
calculated as follows,

min
fn∈fn

{∆en+1 = ‖en‖ − ‖en+1‖} =

min
fn∈fn

eT
n (en + fn)

‖en‖‖en + fn‖
− β =√

1− λ2 − β.

Derivation of this formula is completely identical
to maximization of (34) (see the proof for Lemma
2).

Theorem 2. With the pursuer’s controls un =
ẽn/‖ẽn‖ for each n and with any feasible evader’s
controls wn ∈ w, the pursuer appears in the ε-
neighborhood of the evader under the condition
(37) after the number of steps

N ≤ ‖e0‖ − ε√
1− λ2 − β

,

where ‖e0‖ is the distance between the pursuer
and the evader at the step n = 0.

The obtained results provide the answers for the
following questions:



(1) Assume that the required terminal set is
a solid sphere of the given radius ε. Does
the given terminal set include the minimal
invariant set?

(2) In the case this inclusion is not fulfilled, what
particular steps should be taken with the aim
of fulfillment of the inclusion?

(3) If the inclusion takes place, what is the worst-
case estimate for the number N of discrete-
time steps required for bringing the pursuer
in the given ε-neighborhood of the evader,
meaning satisfying the condition ‖eN‖ ≤ ε,
with the initial distance ‖e0‖ between the
pursuer and the evader and with any feasible
controls wn ∈ w by the evader?

CONCLUSION

The observation errors fn have been assumed
above to take their worst-case values (with respect
to the pursuer’s control objective). However, ob-
servation errors rarely take their boundary values
in practice. This fact taken into account in certain
particular cases could significantly reduce the es-
timates ‖en‖ at every step n.

Analysis of another interesting case when the
mathematical model of observation errors fn takes
the form fn ∈ fn = {f : ‖f‖ ≤ ∆ + λ‖en‖},
where ∆ is a given constant, can be performed
without significant difficulties. The presented
above qualitative results remain still actual for
this case. It can be easily proven that the presence
of constant ∆ in the definition of feasible errors
leads to a certain increase of the radius of minimal
invariant set of the system (19), i.e., this results in
a certain increase of the guaranteed approaching
distance between the pursuer and the evader.

Analysis of the considered pursuit-evasion prob-
lem for the case of two dynamic systems described
by the difference equations

xn+1 =Axn +Bun,

yn+1 =Gyn +Hwn,

where, as above, xn and yn are m-dimensional co-
ordinate vectors of the pursuer and the evader re-
spectively, A and G are matrices of the dimension
(m ×m), B are H are matrices of the dimension
(m× l), and un and wn are l-dimensional control
vectors satisfying the constraints (14) and (15)
respectively, is worth of independent thorough in-
vestigation. Despite the apparent similarity of the
pursuit-evasion problems stated respectively for
two moving points and for two dynamic systems,
generalization of the above-obtained analytical re-
sults to the case of dynamic systems seems to be
rather complicated.
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