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Abstract: We extend the results about performance potentials, perturbation realiza-
tion matrices, policy iteration of Markov decision processes, etc., to semi-Markov
processes (SMPs). Starting with the concept of perturbation realization, we de¯ne
a realization matrix and prove that it satis¯es the Lyapunov equation. From the
realization matrix we de¯ne a performance potential and prove that it satis¯es
the Poisson equation. Sensitivity formulas and policy iteration algorithms of Semi-
Markov decision process (SMDPs) can be derived. The performance sensitivities can
be obtained and policy iteration of SMDPs can be implemeted on a single sample
path of the SMPs.
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1. INTRODUCTION

Recent research shows that Markov decision pro-
cesses (MDPs) can be viewed from a sensitivity
point of view, and both MDPs and perturbation
analysis (PA) of Markov processes are based on an
important concept, called performance potential,
which is strongly related to perturbation realiza-
tion in PA [5] [4]. In this paper, we extend these
results to semi-Markov processes (SMPs). Start-
ing with the concept of perturbation realization,
we de¯ne a realization matrix and prove that it
satis¯es the Lyapunov equation. From the realiza-
tion matrix we de¯ne a performance potential and
prove that it satis¯es the Poisson equation. Sen-
sitivity formulas and policy iteration algorithms
of semi-Markov decision processes (SMDP) can
be derived then. It is also shown that the pote-
nials can be estimated on a single sample path
and hence online algorithms can be derived for

1 Supported in part by a grant from Hong Kong
UGC. Tel: (852)2358-7048 Fax: (852)2358-1485
Email: eecao@ust.hk

performance sensitivities and policy iteration of
SMDPs.

2. FUNDAMENTALS FOR SEMI-MARKOV
PROCESSES

We study a semi-Markov process de¯ned on
a countable state space E = f1; 2; ¢ ¢ ¢g. Let
T0; T1; ¢ ¢ ¢ ; Tn; ¢ ¢ ¢ be the transition epoches. The
process is right continuous so the state at each
transition epoch is the state after the transition.
Let Xn = XTn , n = 0; 1; 2; ¢ ¢ ¢.
De¯ne the semi-Markov kernel [6] as

Q(i; j; t) = PfXn+1 = j; Tn+1 ¡ Tn · tjXn = ig:

Set

Q(i; t) =
X
j2E

Q(i; j; t)

= PfTn+1 ¡ Tn · tjXn = ig;
H(i; t) = 1¡Q(i; t);
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Q(i; j) = lim
t!1Q(i; j; t)

= PfXn+1 = jjXn = ig;
and

G(i; j; t) =
Q(i; j; t)

Q(i; j)

= PfTn+1 ¡ Tn · tjXn = i;Xn+1 = jg:
De¯ne the hazard rates

q(i; t) =
Q0(i; t)
H(i; t)

;

where the prime denote the deivative with respect
to t, and

q(i; j; t) =
Q0(i; j; t)
H(i; t)

;

the latter is the rate that the process jumps from
i to j in [t; t+¢t) given that the process does not
jump out from state i in [0; t).

Let Pt(i; j) = PfXt = jjX0 = ig. Then we have

Pt+¢t(i; j) =
X
k2E

Pt(i; k)

1Z
0

pt(sjk)

£fI(k; j)[1¡ q(k; s)¢t] + q(k; j; s)¢tgds (1)

where pt(sjk)ds is the probability that given the
state at time t is k the process has been in state
k for a period of s to s + ds. I(j; k) = 1 if j = k,
I(j; k) = 0 if j6= k. Letting ¢t! 0, we get

dPt(i; j)

dt
=¡

X
k2E

Pt(i; k)

1Z
0

fpt(sjk)

¢[I(k; j)q(k; s)¡ q(k; j; s)]gds: (2)
When t!1, we have dPt(i;j)

dt
! 0 and Pt(i; j)!

p(j), the steady-state probability of j. We further
observe that as t ! 1, pt(sjk) is the probability
that the interval [s; s + ds) appears in the entire
sojourn time of state k. Thus, we have

lim
t!1 pt(sjk)ds =

dsH(k; s)R1
0
sQ(k; ds)

:

Therefore,

lim
t!1 pt(sjk) =

H(k; s)

mk
;

where

mk =

1Z
0

sQ(k; ds)

is the mean of the sojourn time at state k. Letting
t!1 in both sides of (2), we get

0 =¡
X
k2E

p(k)

1Z
0

1

mk
[I(k; j)Q0(k; s)¡Q0(k; j; s)]ds

=¡
X
k2E

p(k)f 1
mk
[I(k; j)¡Q(k; j)]g

=¡
X
k2E

p(k)f¸k[I(k; j)¡Q(k; j)]g;

where

¸k =
1

mk
:

Finally, we haveX
k2E

p(k)A(k; j) = 0 for all j 2 E ; (3)

where

A(k; j) = ¡¸k[I(k; j)¡Q(k; j)]g:

In a matrix form, we can write

pTA = 0; (4)

where pT = (p(1); p(2); ¢ ¢ ¢ ; ) is the steady state
probability vector, the superscript \T" denotes
transpose, and A is a matrix whose kth row and
jth column is A(k; j). In addition, we have

Ae = 0;

where e = (1; 1; ¢ ¢ ¢)T is a column vector whose
components are all ones.

Equation (4) is exactly the same as the Markov
process with A as the in¯nitesimal generator.
This means that the steady-state probability is
insensitive to the high order statistics for the
sojourn times at all states. Also, the steady-
state probabiliy does not depend on whether the
sojourn time at state i depends on j, the state it
jumps into from i.

3. REALIZATION MATRICES AND
PERFORMANCE POTENTIALS

Consider a semi-Markov process starting from a
transition epoch X0 = j. Denote the instant at
which the process jumps into state i for the ¯rst
time as

Sj(i) = infft ¸ 0; Xt = ijX0 = jg:

We consider the general case where the perfor-
mance measurement in [Tn; Tn+1) can depend on
both Xn and Xn+1. Denote f : E £ E ! R be the
performance function. At any time t 2 [Tn; Tn +
1),denote Yt = XTn+1.Thus, the performance
measure at any time t is f(Xt; Yt).



Now we de¯ne the perturbation realization factors
as

D(i; j) = Ef
Sj(i)Z
0

[f(Xt; Yt)¡ ´]dtjX0 = jg:(5)

where

´ = lim
T!1

1

T

TZ
0

f(Xt; Yt)dt

is the steady-state performance. Let p(i; j) be the
steady-state probability of Xt = i and Yt = j
and p(jji) be the conditional steady-state prob-
ability of Yt = j given that Xt = i, e.g.,
limt!1 P (Yt = jjXt = i) (not to be confused
with limn!1 P (Xn+1 = jjXn = i)). We have

p(jji) =
R1
0
sQ(i; j; ds)R1

0
sQ(i; ds)

=
Q(i; j)mi;j

mi
;

where

mi;j =

1Z
0

sG(i; j; ds); (6)

and

mi =
X
j2E

Q(i; j)mi;j =

1Z
0

sQ(i; ds): (7)

Thus

p(i; j) = p(jji)p(i) = p(i)Q(i; j)mi;j

mi

and

´ =
X
i;j2E

p(i; j)f(i; j) =
X
i2E

p(i)f(i);

where f(i) is de¯ned as

f(i) =

P
j2E Q(i; j)f(i; j)mi;j

mi
: (8)

From de¯nition, we have

D(i; j) = Ef
T1Z
0

[f(Xt; Yt)¡ ´]dtjX0 = jg

+ Ef
Sj(i)Z
T1

[f(Xt; Yt)¡ ´]dtjX0 = jg

=
X
k2E

Q(j; k)
n
Ef

T1Z
0

[f(X0; Y0)¡ ´]dtj

X0 = j;X1 = kg

+Ef
Sj(i)Z
T1

[f(Xt; Yt)¡ ´]dtjX0 = j;X1 = kg
o

=
X
k2E

Q(j; k)
n
[f(j; k)¡ ´]EfT1jX0 = j;X1 = kg

+Ef
Sk(i)Z
T1

[f(Xt; Yt)¡ ´]dtjX1 = kg
o

=
X
k2E

Q(j; k)
n
[f(j; k)¡ ´]mj;k

+Ef
Sk(i)Z
T1

[f(Xt; Yt)¡ ´]dtjX1 = kg
o
;

From (7) and (8), the above equation leads to

D(i; j) = mj [f(j)¡ ´] +
X
k2E

Q(j; k)D(i; k);

or equivalently,

¡[f(j)¡ ´] =
X
k2E

f¡¸j [I(j; k)¡Q(j; k)]D(i; k)g

=
X
k2E

fA(j; k)D(i; k)g: (9)

In a Matrix form, this is

DAT = ¡[efT ¡ ´eeT ]; (10)

where D is a matrix whose components are
D(i; j), and fT = (f(1); f(2); ¢ ¢ ¢ ; ).
Next, on the process Xt, with T0 = 0 being a
transition epoch and X0 = j, for any state i 2 E
we de¯ne a sequence u0; u1; ¢ ¢ ¢ ; as follows.

u0 = T0 = 0;

vn = infft ¸ un; Xt = ig:

and

un+1 = infft ¸ vn; Xt = jg;

e.g., vn is the ¯rst time when the process reaches
i after un, and un+1 is the ¯rst time when the
process reaches j after vn. Apparently, u0; u1; ¢ ¢ ¢
are stopping times and hence Xt is a regenerative
process with fun; n = 0; 1; ¢ ¢ ¢g as its associated
renewal process. By the regenerative theory, we
have

´ =
EfR u1

u0
f(Xt; Yt)dtg

E(u1 ¡ u0)

=
EfR v0

0
f(Xt; Yt)dtg+ Ef

R u1
v0
f(Xt; Yt)dtg

E[v0] + E[u1 ¡ v0] :



Thus,

Ef
v0Z
0

[f(Xt; Yt)¡ ´]dtg

+Ef
u1Z
v0

[f(Xt; Yt)¡ ´]dtg = 0:

By the de¯nition of u0, v0 and u1, we know that
the above equation is

D(i; j) +D(j; i) = 0;

or the matrix D is skew-symmetric

DT = ¡D: (11)

Taking transpose of (10), we get

¡AD = ¡[feT ¡ ´eeT ]:

From the above equation and (10), D satis¯es the
following Lyapunov equation

AD +DAT = ¡F; (12)

where F = efT ¡ feT .
Since D is skew-symmetric, we can write it as

D = egT ¡ geT ; (13)

where gT = (g(1); g(2); ¢ ¢ ¢) is a column vector.
Note that if g ¯ts (13), so does g + ce for any
constant c. g is called a performance potential
vector, and g(i) the performance potential at state
i. As we explained, g may have di®erent versions
each of them di®ers by only a constant.

Substituting (13) into (10), we get

Ag = ¡f + ´e: (14)

Since Ae = 0, A is not invertable. Now suppose
g is any solution to (14). Set c = ´ ¡ pT g and
choose g0 = g + ce. Then pT g0 = ´. Thus, there
always exists a solution to (14) such that pT g = ´.
Putting this into (14), we get

Ag = ¡f + (pT g)e = ¡f + e(pT g):

Thus, we have the Poisson equation for g:

(¡A+ epT )g = f: (15)

This is the same as the Poisson equation for
Markov processes. In particular, for ergodic semi-
Markov processes, (¡A + epT ) is invertable. (15)
only de¯nes a particular version of the perfor-
mance potentials. Multiplying both sides of (15)
by pT on the left side, we get

pT g = ´:

4. SENSITIVITY AND SEMI-MARKOV
DECISION PROCESSES

We have shown that by properly de¯ning g and
A, semi-Markov processes have the same Poisson
equation for potentials and Lyapunov equation
for perturbation realization matrices as thoes for
Markov processes. Thus, performance sensitivity
formulas can be derived in a similar manner and
are brie°y stated here.

First, for two semi-Markov processes with A0, ´0

f 0 and A, ´, f , multiplying both sides of (15) by
p0, we get

´0 ¡ ´ = p0T [(A0 ¡A)g + (f 0 ¡ f)]: (16)

This serves as a foundation for semi-Markov deci-
sion processes. Policy iteration for semi-Markov
processes can be derived from (15) by noting
p0 > 0 componentwise.

Next, suppose A changes to A(±) = A + B±, f
changes to f(±) = f + h±, with ± being a small
real number and Be = 0. Then ´ changes to
´(±) = ´ +¢´ and p changes to p(±). From (16),
we have

´(±)¡ ´(0)
= pT (±)[(A(±)¡A)g + (f(±)¡ f)]:

Letting ± ! 0, we get

@´

@B
= pT (Bg + h): (17)

We can also obtain performance sensitivity using
D. We have

Dp = (egT ¡ geT )p = ´e¡ g:

Replacing g with D in the sensitivity equation, we
get

´0 ¡ ´ = p0T [(A0 ¡A)DT p+ (f 0 ¡ f)];

and

@´

@B
= pT (BDT p+ h):

Equation (5) provides a way to estimate the
realization matrix or the potentials on sample
paths. From (5), we can also obtain

D(i; j) = lim
T!1

fEf
TZ
0

[f(Xt)¡ ´]dtjX0 = jg

¡Ef
TZ
0

[f(X 0
t)¡ ´]dtjX0 = igg:



Therefore,

g(j) = lim
T!1

Ef
TZ
0

[f(Xt)¡ ´]dtjX0 = jg

is performance potential at j. This is the same as
for the Markov process case, except that the inte-
gration starts with a transition epoch. Single sam-
ple path based algorithms can be developed for
potentials, and therefore the performance deriva-
tive (17) can be obtained and policy iteration can
be implemented with a single sample path.

5. CONCLUSIONS

We have shown that with properly de¯ned A, g
and D, the results for potentials, perturbation
realization, PA, and MDPs, etc., can be extended
to SMPs naturally. This provides a powerful tool
in optimization of SMP type of systems. Espe-
cially, the potentials, which play a crucial role
in both sensitivity analysis and policy iteration,
can be measured by the long term performance
integration, which has the same physical meaning
as for Markov processes. Future research topics in-
clude extensions to more general processes such as
generalized semi-Markov processes (GSMPs) and
applications to queueing networks with general
serive time distributions.
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