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Abstract: A new architecture of temporal neural network, called Recurrent Radial Basis 
Function is proposed. This new architecture of neural network take into account the 
temporal aspect of the data in a dynamical way. This functionality is obtained by input 
layer neurons self-connections. The RRBF network is validated on a dynamic monitoring 
problem by analyzing strongly varying sensors signals. The obtained monitoring model is 
able to divert false alarms and to anticipate the system operation in order to consider 
corrective actions, before undesired modes occur. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
In order to optimize the production costs, a great 
number of modern industrial systems need to replace 
the systematic traditional maintenance by a 
conditional one, based on the on-line monitoring. 
This kind of on-line monitoring is thus able to 
prevent an abnormal operation before its occurrence 
and to divert false alarms (Basseville and Cordier, 
1996). 
 
The production systems monitoring methods can be 
classified in three categories (Bernauer and Demmou, 
1995): Methods based on mathematical model, 
methods without such a model and methods based on 
symbolic knowledge of the process. 
 
In this paper, a new neural network architecture 
called RRBF (Recurrent Radial Basis Function) is 
applied in a dynamic monitoring problem. Using a 
self-connection of the input neurons, the RRBF 
neural network is thus able to treat dynamic data 
(temporal aspect). This type of application can be 
compared to a problem of pattern recognition that 
does not require a formal model of the system. 
Consequently, the monitoring model using this 

RRBF network is able to detect a real degradation of 
machine performances and to turn down false alarms. 
 
Before introducing the new neural model, a brief 
recall of radial basis function neural networks is 
presented. 
 
 

2. RADIAL BASIS FUNCTION 
 

The Radial Basis Function networks (RBF) are a 
three-layer networks derived from an interpolation 
technique named RBF interpolation. Used for the 
first time in the context of neuromimetic networks by 
Broomhead and Low (1988), this technique proves to 
be a fast and efficient one, in particular for the 
classification (Jodouin, 1994). 
 
The principle of the method consists to divide the N-
Dimensional space in different classes or categories. 
Every category possesses a core called prototype, and 
an influence field having the shape of a hyper sphere. 
Several prototypes can be associated to the same 
category. The classification consists in evaluating the 
distance between an N-dimensional input-vector and 
the prototypes memorized by the network, and see 
which influence field belongs this vector to (Fig.1). 
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Fig. 1.  Structure of a RBF network. 
 
 
The Radial function is maximal to the core, and 
generally decreases in a monotonous way with the 
distance. The RBF function used in this study is the 
radial Gaussian: 
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with di(x)=||X-Ci|| measuring the distance between the 
input vector X and the prototype Ci ,  
and σi the size of the influence field (standard 
deviation). 
 
 
 
 

3. RECURRENT RADIAL BASIS FUNCTION 
NETWORK (RRBF) 

 
 
 

3.1 Network architecture 
 
The proposed RRBF neural network (Recurrent 
Radial Basis Function) uses an internal 
representation of the time (Chappelier, 1996; Elman, 
1990). This property obtained with a self-connection 
of the input layer neurons gives a dynamic aspect to 
the RBF network (Fig.2). 
 
This self-connection has been used on a Multi Layer 
Perceptron by Bernauer (1993) for the recognition of 
temporal sequences of an assembly system. The 
major inconvenience of this neural network is the 
complexity of the training process (Back Propagation 
Algorithm). Indeed, the parameters adjustment is 
very delicate and requires several tests and a good 
knowledge of the problem. The flexibility of the 
training process of the RRBF network (same training 
algorithm - RCE  (Reilly, et al., 1982) - as the RBF 
networks) represents an important advantage of this 
architecture. 
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Fig. 2.  RRBF Network. 
 
 
 
3.2 Effect of the self-connection 
 
Every neuron of the input layer makes a summation 
at the instant t between its input Ii and its output of 
the previous instant (t-1) weighted by the weight of 
the self-connection wii. Output result of the input 
neuron corresponds thus to the activation function: 
 

( ) = ( 1) + ( )i ii i ia t w x t I t−  
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where ai(t) and xi(t) are respectively the activation 
and the output of the neuron i at time t, wii is the 
weight of the self-connection of the neuron i, and f 
represents the activation function of the neuron i 
having the expression of the sigmoid below : 
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To study the effect of the self-connection of every 
neuron, the neuron input is equal to zero (Ii = 0) and 
the neuron output xi(t) = 1. The neuron will evolve 
thus, without the influence of the external input         
( Ii = 0 ) (Bernauer, 1996). The evolution of the 
output neuron is : 
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The diagram of the figure 3 shows the evolution of 
the output of the neuron in time. This evolution 

depends on the gradient of % (inverse of the 

connection weight of the neuron wii ) and also on the 
value of the k parameter of the activation function. 
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Fig. 3. The effect of the self-connection on the 

evolution of the neuron state. 
 
 
 
 
3.3 Training Algorithm of the RRBF network 
 
Input self-connection procures to the neuron a certain 
memory. This characteristic allows them to take into 
account the previous inputs and not only the inputs at 
the instant t. Each input Ii(t) represents a calibrated 
signal obtained by a sensor of the production system. 
 
The training algorithm used for the RRBF network is 
the RCE (Reilly, et al., 1982), which introduces a 
new prototype when it is necessary and adjusts the 
influence field of existing prototypes in order to 
avoid conflicts. This training algorithm is more 
flexible than the one used by Bernauer and Demmou 
(1993). Otherwise, the problem of over-training met 
in back propagation algorithm doesn’t have an effect 
in the RCE algorithm. 
 
The RRBF network was already tested with success 
(Zemouri, et al., 2001) for temporal sequences 
recognition. Each input neuron represents the 
occurrence of a sequence event.  During the training 
process, events are presented to the network one by 
one, and the category is defined after the last event 
was presented to the network. Each radial neuron 
memorizes a prototype (vector sequence) and each 
neuron of the output layer represents a category 
(sequence). The only parameters to regulate are the 
weight of the self-connections (wii) and the size of 
the influence fields σi of the radial functions. 
 
In the following paragraph, a validation of the neural 
model on a monitoring problem is presented. This 
application field put in evidence new properties of 
the RRBF, which seems very useful for production 
systems safety engineering. 
 
 

 Production System   
(on line) 

Output Signal 

RRBF neural 
network 

Operating modes 
+ Actions  

Calibration of 
the signals 

Various Sensors 
(vibration, 

temperature, …) 
Actuator  

 
Fig. 4. General architecture of a neuronal monitoring     

system. 
 
 

4. APPLICATION OF THE RRBF NETWORK IN 
A MONITORING TASK 

 
4.1 Description of the monitoring model 
 
The RRBF network is tested on a production system 
monitoring, using sensors signals (Fig.4). To simplify 
the model, only two operating modes and only one 
sensor signal are considered (Fig.5). Obviously, in 
practice the problem is much more complex, (several 
operating modes with a multitude of signals sensors) 
but the reasoning will be the same. The sensor signal 
S(t) represents the stimulus of the input neuron and 
each operating mode is represented by a neuron of 
the hidden layer. In the case of several signals, the 
neural model will have as many input neurons as 
sensor signals. 
 
Figure 5 represents the network architecture with the 
two following operating modes: 
 
o Operating mode 1 (a nominal operation mode), 
o Operating mode 2 (a known failure mode). 
 
Thanks to the self-connection, the RRBF network is 
able to take into account the temporal aspect of the 
input signal and thus to supervise its evolution. This 
characteristic procures to the network the capacity to 
distinguish between a false alarm and a permanent 
degradation in time (loss of performance). Figure 6 
shows that the output X(t) of the looped (input) 
neuron is different for a same excitation value S(t). 
The first represents degradation in time, while the 
second represents an abrupt change of the input 
signal. 
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Fig. 5.  Structure of the monitoring model. 
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Fig. 6. Response of the monitoring model to a 

degradation stage and a false alarm. 
 
 
Each neuron of the hidden layer is dedicated to an 
operating mode. The radial function of these neurons 
covers an operating range regulated using the 
influence ray σi. The training process is summarized 
to the adjustment of some parameters (certain are 
given by the manufacturer). These parameters are: 
 
o A good calibration of the input signal to avoid 
the saturations zones of the input neuron activation 
function (sigmoid), 
o The adjustment of the parameters of the input 
neuron activation function (k and wii), 
o To position the radial functions on the system 
operating ranges. The prototypes of the two functions 
(xbf and xdef) will be experimentally defined. These 
prototypes represent respectively the outputs of the 
looped neuron having input signal Sbf (average signal 
corresponding to the normal working mode) and Sdef 
(average signal corresponding to the failure mode), 
o Defining the size of the influence field of the 
radial functions. 
 
The figure 7 shows the correspondence between the 
sensor signal S(t) and the RBF neurons outputs   
Rbf(t) and Rdef(t). 
 
 

S(t) : input signal  

X(t) : output of the sigmoid neuron   

R(t) : response of the RBF neurons 
Sbf :  Average of the nominal working signal  

Sdef : Average of the abnormal working signal 
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Fig. 7. Correspondence between the sensor signal and 

output RBF neurons. 
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Fig. 8. Sensitivity of the neuron activation function 

according to the parameter k. 
 
 
4.2. A simulation example 
 
To apply the neural model in a monitoring problem, 
an output sensor signal S(t) of a system is simulated. 
The ranges of the two operating modes (normal and 
failure) represented by figure 7 are supposed known. 
The signal must be calibrate in a manner to avoid the 
saturation zone of the sigmoid activation function of 
input neuron (3). The width of the resolution zone 
depends on the parameter k (Fig. 8). An arbitrary 
width of hundred units (S(t) < 100) obtained for        
k = 0,05 is chosen. In order to give a longest storage 
capacity to the input neuron, the weight of the self-
connection must be lower than inverse tangent at the 
sigmoid origin (wii < 2/k) (Bernauer et al., 1993). The 
weight of this self-connection has the value wii = 39. 
 
For an average input signal corresponding to the 
normal operation range Sbf = 1 and an input average 
signal corresponding to the failure mode Sdef = 6, the 
respective outputs of the sigmoid neuron (multiplied 
by a coefficient 100) corresponding to the steady 
state of the equation (2) are: xbf = 35,48, xdef = 66,09. 
The two corresponding radial functions are centered 
on the prototypes xbf and xdef (Fig. 7). The influences 
rays σi of the two radial functions are given 
according to the width of the operating modes 
(Fig.7). For a width of the normal operation mode 
equal to 2 (S(t) ³ [ 0,2 ]) and the failure mode one  
equal to 6 (S(t) ³ [ 3,9 ]), the influences rays of the 
two functions have the following respective values  

σbf  = 10 and σdef  = 15 (2). 
 
To materialize the behavior of the monitoring 
neuronal model, four cases of a system operation are 
simulated : 
 
Normal working Case. The case of a nominal 
operation where the signal S(t) is close to Sbf. The 
output X(t) of the input neuron is then equal to 35. 
This output is close to the neuron prototype 
corresponding to the normal operating range           
(Rbf = 1and Rdef = 0). 
 



Table 1 Case of a normal working situation 
 

 S(t) X(t) Rbf (t) Rdef(t) Working mode  Result  

t 1 35 1 0 Normal operation OK 

 
 
 

Case of false alarm. Often false alarms are due to 
disturbances of various natures (acquisition 
disturbance). This disturbance signal generally does 
not persistence (Fig. 7). the neural network is 
insensitive to these abrupt disturbances. The table 2 
shows the answers of the network for this kind of 
disturbance. At the moment of the perturbation (t=t1), 
the two output neurons give approximately the same 
answer, corresponding to a possible failure. At the 
next step (t=t1+1) the input signal return to its 
normal value. The neuron response corresponding to 
the correct working range tends to grow while the 
failure range response tends to decrease (Fig 9). This 
behavior is equivalent to false alarm detection. 
 

Table 2 Cases of a false alarm 
 

  S(t) X(t) Rbf (t) Rdef(t) Working mode  Result 

t<t1 1 35 1 0 
100% normal 

working  
OK 

t = t1 7 47 0.19 0.23 

19% normal 
working mode 
23 % failure 

working mode  

Possibility 
of existence 
of a failure 

t = t1+1 1 45 0.33 0.15 

33% normal 
working mode 

15% failure 
working mode 

Possibility 
of false 
alarm 

t = t1+2 1 43 0.46 0.11 

46% normal 
working mode 

11% failure 
working mode 

OK 

t = t1+3 1 42 0.58 0.08 

58% normal 
working mode 

8% failure 
working mode 

OK 
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Fig. 9. Response of the RBF neuron corresponding to 

the failure mode. No alarm is generated in the 
case of acquisition disturbance. 

 
 

Case of a progressive degradation. The case of 
progressive degradation induces a decreasing output 
corresponding to the normal working mode neuron 
and a growth of the failure mode neuron output, until 
the detection of the failure (Fig.10). The neural 
network is able to detect the failure before the signal 
reaches its maximum (critical) value (S(t)=7). The 
monitoring model is thus able to anticipate the 
system operation in order to consider corrective 
actions, before undesired modes occur. 
 
 
 
 
 

Table 3 Progressive degradation case 
 

 
 S(t) X(t) Rbf (t) Rdef(t) Working mode  Result  

t<t2 1 35 1 0 
100% normal 
working mode  

OK  

t = t2 2 37 0.93 0.028 

93% normal 
working mode 

3 % failure 
working mode 

loss of 
performances 

t = t2+1 3 41 0.65 0.07 

65% normal 
working mode 

7% failure 
working mode 

Degradation 
of 

performances  

t = t2+2 4 46 0.26 0.18 

26% normal 
working mode 

18% failure 
working mode 

Possibility of 
failure  

t = t2+3 5 52 0.05 0.43 

5% normal 
working mode 

43% failure 
working mode 

Failure 

t = t2+4 6 57 0.005 0.74 

0.5% normal 
working mode 

74% failure 
working mode 

Failure 

t = t2+5 7 62 0.0004 0.95 

0.04% normal 
working mode 

95% failure 
working mode 

Failure 
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Fig. 10. Neuron response corresponding to the failure 

mode. Earlier detection of the failure. 
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Fig. 11. Response of the neuron corresponding to the 

failure mode. Breakdown detection. 
 
 
Case of a sudden and persistent breakdown. The 
RRBF neural network quickly detects this type of 
failure. The neuron output corresponding to the 
normal working mode decreases quickly and the 
output corresponding to the failure mode grows in 
the same way (Fig. 11). 
 
 

Table 4 Cases of an abrupt and  
persistent breakdown 

 
 S(t) X(t) Rbf (t) Rdef(t) Working mode  Result 

t<t3 1 35 1 0 
100% normal 
working mode 

OK  

t = t3 7 47 0.19 0.23 

19% normal 
working mode 
23 % failure 

working mode 

Possibility 
of failure 

t = t3+1 7 56 0.009 0.67 

0.9% normal 
working mode 

67% failure 
working mode 

Failure 

t = t3+2 7 62 0.0006 0.93 

0.06% normal 
working mode 

93% failure 
working mode 

Failure 

t = t3+3 7 65 0.0001 0.99 

0.01% normal 
working mode 

99% failure 
working mode 

Failure 

 
 
 

5. CONCLUSION 
 
A neural network production system monitoring does 
not require the existence of a formal model of the 
system. Otherwise, the integration of dynamic 
evolution of parameters in the RRBF plays a very 
important role for the earlier detection of failures. 
This dynamic behavior is integrated using a self-
connection of the input neurons. The application 
example shows that the RRBF network is able to 
dissociate between a true degradation and a false 
alarm. The training algorithm – RCE – is more 
flexible than the one used in the MLP models. The 
neural monitoring model presented in this paper can 
be used to learn on-line new operating modes and 
this without the problem of over-training. A practical 

hardware implementation open future prospects for 
on-line applications (real time). 
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