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Abstract: The problem of recursive state estimation for a class of distributed
parameter systems with an integral quadratic constraint in Hilbert spaces is addressed.
Based on solving the linear tracking problem for time-varying systems in Hilbert
spaces, necessary and sufficient conditions for robust state estimation problem
involving construction of the set of all possible states at the finite interval time with
given output measurements and integral quadratic constraints are derived.
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1. INTRODUCTION

Robust state estimation of linear uncertain sys-
tems has been for many years a subject of great
interest to researchers in control engineering the-
ory. This problem regarding as an extension of
the Kalman filter to the case of uncertain sys-
tems is to find the set of all states consistent
with the given measurements. The solution to this
problem was found to be ellipsoid in state space
which is defined by the standard Kalman filter
equation. There has been a great deal of research
effort regarding this problem, see (Bertsekas and
Rhodes, 1971; Petersen and Savkin, 1999; Savkin
and Petersen, 1998; Xie and Soh, 1994). However,
little attention has been paid towards uncertain
infinite-dimensional systems. The motivation of
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this is that the optimal control problem of infinite-
dimensional systems is difficult both in mathe-
matical theory and in practical engineering. From
the 70’s, many researchers began to develop the
optimal control for distributed parameter sys-
tems and proposed the maximum principle, the
generalized Riccati equation, etc., see (Anderson
and Moore, 1990; Pritchard and Solomon, 1987;
Phat, 1996). In these mentioned papers the sys-
tem to be considered is either time-invariant or
finite-dimensional. The aim of this paper is to
extend the result of (Savkin and Petersen, 1995)
to infinite-dimensional systems with an integral
quadratic constraint. The main result of the paper
shows that the recursive state estimation prob-
lem can be solved via the use of linear tracking
problems in Hilbert spaces and then it can also
be constructed by the solution of the infinite-
dimensional Riccati differential equation.
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2. NOTATIONS AND DEFINITIONS

The following notations will be used in force
throughout. Rn denotes the n− dimensional Eu-
clidean space. Let X, U, Y, W,Z denote Hilbert
spaces with the norm ‖.‖X and the inner prod-
uct 〈., .〉X , etc. X̂ denotes the space X × X;
L(X,U) (respectively, L(X)) denotes the space
of all linear bounded operators mapping X into
U, (respectively, X into X). L2([t, s], X) denotes
the set of all strongly measurable 2−integrable
X−valued functions on [t, s]. C([t, s], X+) denotes
the set of all linear bounded non-negative definite
operator functions in L(X) continuous on [t, s].
D(A), A∗ and A−1 denote the domain, the adjoint
and the inverse of the operator A, respectively. cl
M denotes the closure of a set M. An operator
Q ∈ L(X) is self-adjoint if Q = Q∗. We recall that
an operator Q ∈ L(X) is non-negative definite
(and denote Q ≥ 0) if 〈Qx, x〉 ≥ 0, for all x ∈ X. If
the inequality is strictly greater than 0 for x 6= 0,
then Q is positive definite (and denote Q > 0). If
Q ∈ L(X) satisfies the following condition:

∃c > 0 : 〈Qx, x〉 ≥ c‖x‖2, ∀x ∈ X,

then Q is called a strictly positive definite opera-
tor (and denote Q � 0). It is obvious that for the
finite-dimensional case, X = Rn, the positive defi-
nite operator is strictly positive definite. Consider
a linear abstract uncertain system of the form

ẋ = A(t)x + B(t)u + B1(t)w, t ∈ [0, T ],

z(t) = D(t)x(t) + C(t)u(t),

y(t) = E(t)x(t) + v(t), (1)

where x(t) ∈ X is the state, u(t) ∈ U is the control
input, v(t) ∈ Y,w(t) ∈ W are the uncertain in-
puts, z(t) ∈ Z, y(t) ∈ Y are the measured outputs;
A : X → X; B ∈ L(U,X); B1 ∈ L(W,X); C ∈
L(U,Z); D ∈ L(X, Z), E ∈ L(X,Y ). The uncer-
tainty in the above system is described by

[w(t), v(t)] = ψ(t, x(.)). (2)

Let M ∈ L(X), and Q(t) ∈ L(W ), R(t) ∈ L(Y )
be given symmetric operators such that

M > 0, Q(t) ≥ 0, R(t) � 0,∀t ≥ 0. (3)

Definition 2.1. (System uncertainties) Let x0 ∈
X be a given state, d > 0 be a given positive
number. For any finite time interval [0, s], s ≤ T,
the uncertainty (2) of the system (1) is admissible
if w(t) ∈ L2([0, s],W ), v(t) ∈ L2([0, s], Y )) and
for any control input u(t) ∈ L2([0, s], U) and
any corresponding solution of system (1) with the
initial condition x(0) the following condition holds

〈M(x(0)− x0), x(0)− x0〉+
∫ s

0

[

〈R(t)w(t), w(t)〉

+〈Q(t)v(t), v(t)〉
]

dt ≤ d +
∫ s

0
‖z(t)‖2dt (4)

Let u(t) = u0(t), y(t) = y0(t) be arbitrary fixed
control input and measured output. We consider
any finite time interval [0, s] and denote

Xs[x0, u0, y0, d]

the set of all possible solutions x(s) of system (1)
at time s for any admissible uncertain w(.).

Definition 2.2. The uncertain system (1) is
robustly verifiable if for any x0 ∈ X, any time
s ∈ [0, T ], any constant d > 0, any fixed control
u(t) = u0(t), and fixed measured output y(t) =
y0(t), the set Xs[x0, u0, y0, d] is bounded.

We will consider the following problem. Let y(t) =
y0(t), u(t) = u0(t) be fixed given measured output
and input of the uncertain system (1), and let
the finite time interval [0, s] be given. Then, find
the corresponding finite set Xs[x0, y0, u0, d] of all
possible states x(s) at time s ∈ (0, T ] for the
uncertain system (1) with given initial condition
and admissible uncertainty inputs (2).

3. LINEAR TRACKING PROBLEM

The main technique used in solving robust es-
timation problem is the standard linear regula-
tor problem which is constructed by solving a
Riccati differential equation. There are some re-
sults on the linear regulator problem for infinite-
dimensional systems presented in (Bensoussan et
al., 1992; Kuelen, 1993) and the optimal control
conditions are derived from the solution of Riccati
differential equations in Hilbert spaces. In this sec-
tion we give optimal control conditions for a linear
tracking problem of infinite-dimensional system.
The obtained conditions will be implemented to
solving the robust estimation control problem in
next section.

Consider a linear time-varying control system in
Hilbert space of the form

ẋ(t) = A(t)x(t) + B(t)u(t), t ∈ [t0, s],

x(t0) = x0. (5)

We make the following assumption on the system
(5).

(i) B(t) ∈ L(U,X) for every t ≥ t0 and
B(.)u,A(.)x is a continuous function on [t0, s] for
all u ∈ U, x ∈ X.

(ii) The operator A(t) : D(A(t)) ⊂ X → X,
clD(A(t)) = X generates a strong evolution op-
erator U(t, r) : {(t, r) ∈ R2 : t ≥ r ≥ t0} → L(X)



such that the system (5) has a unique solution,
see (Bensoussan et al., 1992; Curtain and Zwart,
1995) given by

x(t) = U(t, t0)x0 +
∫ t

t0
U(t, τ)B(τ)u(τ)dτ.

Consider control system (5) with the minimized
cost functional

J(u) = 〈Mx(s), x(s)〉+
∫ s

t0
[〈Ru(t), u(t)〉+ 〈Qx(t), x(t)〉]dt, (6)

where M ∈ L(X), R(t) ∈ L(U), Q(t) ∈ L(X) are
self-adjoint operators satisfying the condition (3).
Let

V (x(t0), t0) = min
u(.)

J(u(t), t0).

For any Q(t) ∈ L(X), we recall that the linear
operator function P (t) ∈ L(X) is a solution of
the Riccati differential equation

Ṗ + PA + A∗P − PBR−1B∗P + Q = 0, (7)

if the following relation holds for all x ∈ D(A(t)), t ∈
[t0, s] :

〈Ṗ x, x〉+ 〈PAx, x〉+ 〈Px, Ax〉
−〈R−1B∗Px,B∗Px〉+ 〈Qx, x〉 = 0.

Proposition 3.1. (Curtain and Zwart, 1995) The
optimal control problem (5)-(6) is solved such that
the performance index V (x(t0), t0) exists and is
finite if and only if the Riccati differential equation
(7) has a solution P (t) ∈ C([t0, s], X+) with the
boundary condition P (t0) = M. Moreover, the
optimal controller is given by

u∗(t) = −R−1(t)B∗(t)P (t)x(t),

and the optimal cost is

V (x(t0), t0) = 〈P (t0)x(t0), x(t0)〉.
We now apply the linear regular problem to a lin-
ear time-varying tracking problem as follows. Con-
sider the following linear time-varying observed
control system

ẋ(t) = A(t)x(t) + B(t)u(t), t ∈ [t0, s],

y(t) = E(t)x(t), (8)

Let y0(.) be a measure output of the uncontrolled
system

ż(t) = Ā(t)z(t), t ∈ [t0, s],

y0(t) = F (t)z(t), (9)

where z(t) ∈ X, Ā : X → X, F ∈ L(X). Let
M ∈ L(X), R(t) ∈ L(U) and Q(t) ∈ L(X) be

given operators satisfying the condition (3). The
optimal tracking problem is to find an optimal
controller for the system (8)-(9) minimizing the
cost functional

J(t0, x, u) = 〈M(x(s)− z(s)), x(s)− z(s)〉+
∫ s

t0

{

〈Ru, u〉+ 〈Q(y0 − y), y0 − y〉
}

dt.(10)

We define the following linear operators M̂, Q̂ :
X̂ → X̂, by setting

M̂x̂ = (Mx1−Mx2,−Mx1+Mx2),

Q̂x̂ = (E∗QEx1−E∗QFx2,−F ∗QEx1+F ∗QFx2),

Âx̂ = (Ax1, Āx2),

and B̂ : U → X̂ defined by B̂u = (Bu, 0).
Consider the linear operator P̂ (t) ∈ L(X̂), t ∈
[t0, s] defined by

P̂ (t)x̂ = (P (t)x1 + P1(t)x2, P1(t)x1 + P2(t)x2),

where P (t), Pi(t) ∈ L(X), i = 1, 2, satisfying the
following system of Riccati differential equations

Ṗ + PA + A∗P − PBR−1B∗P + E∗QE = 0,

Ṗ1 + P1Ā + A∗P1 − PBR−1B∗P1 − E∗QF = 0,

Ṗ2 + P2Ā + Ā∗P2 − P1BR−1B∗P1

+F ∗QF = 0, (11)

with the boundary condition

P (s) = M, P1(s) = −M,P2(s) = M.

We can apply the linear regulator problem stated
in Proposition 3.1 to obtain the following result.

Proposition 3.2 (Time-varying linear tracking
problem). The optimal tracking problem (8)-(10)
is solved such that the optimal performance index
V (t0, .) is finite if the system of Riccati differen-
tial equations (11) has the solution P (t), Pi(t) ∈
C([t0, s], X+), i = 1, 2 . Moreover, the optimal
controller and the optimal cost are given by

u(t) =−R−1[B∗Px + B∗P1z],

V (t0, x0) = 〈P (t0)x(t0), x(t0)〉+

2〈b(t0), x(t0)〉+ c(t0), (12)

where −ḃ(t) = (A∗−PBR−1B∗)b−E∗Qy0, b(s) =
−Mz(s); ċ(t) = 〈BR−1B∗b, b〉 − 〈Qy0, y0〉, c(s) =
〈Mz(s), z(s)〉.

Sketch of the proof. We define a new variable
v(t) = [x(t), z(t)] ∈ X̂. This variable together
with the operators M̂, Â(t), Q̂(t) are so con-
structed that we can therefore reduce to the time-
varying linear regular problem (8)-(10) in X̂ re-
quiring minimizing the quadratic index



J(t0, v) = 〈M̂v(s), v(s)〉+
∫ s

t0
{〈R(t)u(t), u(t)〉) + 〈Q̂(t)v(t), v(t)〉}dt,(13)

with the relationship

v̇(t) = Âv(t) + B̂u(t), v(s) = [x(s), z(s)] ∈ X̂.

Assume that there are operators P (t), Pi(t) ∈
C([t0, s], X+) satisfying the system of Riccati dif-
ferential equations (11). It is easy to verify that
the operator P̂ (t) is a solution of the Riccati
equation

˙̂P + P̂ Â + Â∗P̂ − P̂ B̂R−1B̂∗P̂ + Ê∗Q̂Ê = 0,

with P̂ (s) = M̂. Therefore, we can apply the
linear regulator problem stated in Proposition 3.1
and conclude that the optimal controller is defined
by

u(t) = −R−1(t)B̂∗(t)P̂ (t)v(t).

Moreover, we can see that

V (t0, v0) = 〈P (t0)x(t0), x(t0)〉+ 2〈P1(t0)z(t0),

x(t0)〉+ 〈P2(t0)z(t0), z(t0)〉.

Define the function b(t), c(t) by

b(t) = P1(t)z(t), c(t) = 〈P2(t)z(t), z(t)〉.

Differentiating b(t), c(t) gives

ḃ(t) = −(A∗ − PBR−1B∗)b + E∗Qy0,

ċ(t) = 〈BR−1B∗b, b〉 − 〈Qy0, y0〉.
Therefore

V (t0, x0) = 〈P (t0)x(t0), x(t0)〉+

2〈b(t0), x(t0)〉+ c(t0).

Remark 3.1. Note that by the same arguments
that used in the proof of Proposition 3.2, we can
extend the linear tracking problem to the systems
(8), (9) with respect to two measure outputs:

y(t) = E(t)x(t), y0(t) = D(t)x(t),

w(t) = F (t)z(t), w0(t) = N(t)z(t),

with the cost functional

J(t0, x, u) = 〈M(x(s)−z(s)), x(s)−z(s)〉

+
∫ s

t0

{

〈R(t)u(t), u(t)〉+ 〈Q(t)[y0 − y], [y0 − y]〉

+〈Q1(t)[w0−w], w0−w]〉
}

dt.

The condition (12) holds true for the functions
b(t) and c(t) respectively replaced by

−ḃ(t) = [A∗ − PB∗R−1B]b− E∗Qy0 −D∗Q1w0,

ċ(t) = 〈BR−1B∗b, b〉 − 〈Qy0, y0〉 − 〈Q1w0, w0〉.
In this case the system of Riccati equations is
similarly defined by (11).

4. MAIN RESULT

The solution to the robust state estimation prob-
lem involves the following system of Riccati equa-
tions

Ṗ + PA + A∗P − PB1R−1B∗
1P

+E∗QE −D∗D = 0, (14)

where P (0) = M. Also, consider the following
state estimator equation

ė = [A + H(E∗QE −D∗D)]e + f(t, u0, y0),

where e(0) = x0,H(t) = P−1(t) and

f(t, u0, y0) = (B −HD∗C)u0 −HE∗Qy0.

Let us denote

ηs(u0, y0) =
∫ s

0

{

〈Q(y0 −Ee), (y0 −Ee)〉

−‖De + Cu0‖2
}

dt.

The main result is the following theorem.

Theorem 4.1. Assume that E∗QE − D∗D ≥
0. If the system (1) is robustly verifiable, then
the Riccati differential equation (14) has a so-
lution P (t) ∈ C([0, T ], X+). Conversely, if the
Riccati equation (14) has the solution P (t) ∈
C([0, T ], X+), which is strictly positive definite
for all t ∈ [0, T ], then the system (1) is robustly
verifiable. Moreover, let s ∈ [0, T ], x0 ∈ X, d >
0, u0(t), y0(t) be given, then

Xs[x0, u0, y0, d] =
{

xs ∈ X :

〈P (s)[xs−e(s)], [xs−e(s)]〉 ≤ d+ηs(u0, y0)
}

.

Sketch of the proof : (i) Assume that the system
(1) is robustly verifiable. Let s ∈ [0, T ]. By defini-
tion of Xs[x0, u0, y0, d] that xs ∈ Xs[u0, u0, y0, d]
if and only if there exist functions x(.), v(.) sat-
isfying (1) such that x(s) = xs, the constraint
(4) holds. Due to the condition (4) it follows that
xs ∈ Xs[u0, y0, d] if and only if there is an input
w(.) ∈ L2[0, s] such that

J(xs, w(.)) ≤ d, (15)

where J(xs, w(.)) is defined by

J(xs, w(.)) = 〈M(x(0)− x0), x(0)− x0〉

+
∫ s

0
{〈Rw(t), w(t)〉+ 〈Qv(t), v(t)〉 − ‖z(t)‖2}dt,

and x(.) is the solution of system (1) with input
w(.) and boundary condition x(s) = xs. Taking
x0 = 0, u0(t) = 0, y0(t) = 0, d = 1, the above
cost functional is then rewritten in the form (13),
where Q̂ = E∗QE − D∗D. By the assumption,



the set Xs[0, 0, 0, 1] is bounded, there is a positive
number a > 0 such that all xs ∈ X with ‖xs‖ = a
do not belong to the set Xs[0, 0, 0, 1]. Therefore,
J(xs, w(.)) > 1, for all xs ∈ X such that ‖xs‖ = a
and for all w(.) ∈ L2([0, s],W ). Since J(xs, w(s))
is a homogeneous quadratic functional, it is easy
to check that

inf
u∈L2[0,s]

J(xs, w(s)) > 0,

for all s ∈ [0, T ], xs 6= 0. This minimizing prob-
lem subject to the system (1) is a linear regu-
lator problem in which the time is reversed, us-
ing Proposition 3.1, there exists operator P (t) ∈
C([0, s], X+), which is the solution of the equa-
tions (14). Moreover, since the cost functional is
strictly positive and the terminal value P (s) is
positive definite, we conclude that P (t) > 0 for
all t ∈ [0, T ].

(ii) To prove the converse part, we first note that
xs ∈ Xs[x0, u0, y0, d] for any s ∈ [0, T ] if and only
if there is an input w(.) ∈ L2([0, s],W ) such that
the condition (15) holds for the cost functional
satisfying the condition (4). The minimizing prob-
lem

min
u∈L2[0,s]

J(xs, w(.)),

where the minimum is taken over all the solution
x(.) and w(.) connected by the system (1) with
the boundary condition x(s) = xs. We wish
to convert this optimal control problem into a
tracking problem by setting

x̃(t) = x(t)− x1(t),

where x1(t) is the solution of equation

ẋ1(t) = A(t)x1(t) + B(t)u0(t), x1(0) = 0.

We can verify that that x̃(t) is a solution of the
following system

˙̃x(t) = A(t)x̃(t) + B1(t)w(t), x̃(0) = x0).(16)

Therefore, the cost functional can be rewritten in
the form

J(x̃s, w(.)) = 〈M [x̃(0)− x0], [x̃(0)− x0]〉

+
∫ s

0
{〈Rw,w〉+ 〈Qa(x̃, x1, y0), a(x̃, x1, y0)〉

−‖b(x̃, x1, u0)‖2}dt

where

a(x̃, x1, y0) = y0 − E[x̃(t) + x1(t)],

b(x̃, x1, u0) = D[x̃(t) + x1(t)] + Cu0.

We now consider control system (16) with the
measure outputs:

v0(t) = Ex̃(t), v1(t) = −Dx̃(t).

Hence, equation (16) and the cost functional

J(x̃s, w(.)) = 〈M [x̃(0)− x0], [x̃(0)− x0]〉+
∫ s

0
{〈Rw,w〉+〈Q(ȳ0−v0), (ȳ0−v0)〉−‖ȳ1−v1‖2}dt,

where ȳ0(t) = y0 − E(t)x1(t), ȳ1(t) = Dx1(t) +
Cu0(t), define a linear tracking problem, where
y0(.), u0(.), x1(.) are all treated as reference inputs
and taking Ā(t) = A(t), Q1(t) = −I, z(t0) = x0

and N(t), F (t) ∈ L(X, Y ) such that

ȳ0(t) = F (t)z(t), ȳ1(t) = N(t)z(t).

By the assumption there is a strictly positive def-
inite operator function P (t) � 0, t ∈ [0, T ], which
is the solution of the Riccati equation (14). Know-
ing P (t), we can define the operators Pi(t), i = 1, 2
satisfying the Riccati equations (11). Thus we can
apply the tracking problem, Proposition 3.2 and
Remark 3.1, for systems (16) such that this prob-
lem is solved in the reversed time and the optimal
cost V (s, .) exists and satisfies the condition

V (s, x̃s) = 〈P (s)x̃(s), x̃(s)〉+ 2〈b(s), x̃(s)〉+ c(s),

where the functions b(t), c(t), t ∈ [0, s] satisfy the
differential equations in Remark 3.1. Let H(t) =
P−1(t), t ∈ [0, s], we define v(t) = H(t)b(t). The
optimal index can be rewritten as

V (x̃s, s) = 〈P (s)[x̃ + v], [x̃ + v]〉 − ηs(x0, u0, y0),

where ηs(x0, u0, y0) = 〈H(s)b(s), b(s)〉 − c(s).
On the other hand, by integrating the function
〈H(t)b(t), b(t)〉, and c(t) from 0 to s, and we can
find the form of the function ηs(.). Let us set
e(t) = x1(t) − v(t). Then e(0) = −v(0) = x0 and
note that

x̃(t) + v(t) = x(t)− x1(t) + v(t) = x(t)− e(t),

therefore, we have

V (xs, s) = 〈P (s)[x(s)− e(s)], [x(s)− e(s)]〉

−ηs(u0, y0) ≤ d.

Consequently, the set Xs[x0, u0, y0, d] defined by

Xs[x0, u0, y0, d] = {xs ∈ Rn : 〈P (s)[xs − e(s)],

[xs − e(s)]〉 ≤ d + ηs(u0, y0)},
is obviously bounded.

Remark 4.1. Note that if the system (1) is finite-
dimensional, then the solution matrix P (t) being
positive definite for all t ∈ [0, T ] is invertible, and
the condition stated in Theorem 4.1 is necessary
and sufficient for the robust verifiability.
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