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Abstract: This paper considers uncertain systems from a behavioural point of view defined
via quadratic differential forms. This uncertainty definition is closely related to the integral
quadratic constraint uncertainty description commonly found in robust control theory. The
paper presents a frequency domain condition for the set of behaviours of a given uncertain
system to contain the set of behaviours of another given uncertain system. This result is useful
in uncertainty modelling problems in which one wishes to consider the trade off between
model complexity and model conservatism.
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1. INTRODUCTION

If we take a behavioural approach to system mod-
elling, we can regard a system as being character-
ized by a corresponding set of possible trajectories;
e.g., see (Polderman and Willems, 1998). This idea
can also be applied to uncertain system models in
which the model is required to capture a range of
possible process dynamics; e.g, see (D’Andrea and
Paganini, 1993; D’Andrea et al., 1993; D’Andrea and
Paganini, 1994; Paganini and Doyle, 1994) in which
some different approaches to modelling uncertain sys-
tems from a behavioural point of view are consid-
ered. This paper considers a new class of systems
modelled within a behavioural framework which are
motivated by the idea of representing uncertainty in
system dynamics. In this new class of behavioural
systems, the behaviour sets being considered are de-
fined in terms of quadratic differential forms; e.g.,
see (Willems and Trentelman, 1998). This description
can be regarded as a behavioural generalization of the
frequency domain integral quadratic constraint (IQC)
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uncertainty description for the case of a single uncer-
tainty constraint; e.g., see (Boyd et al., 1994; Megret-
ski and Rantzer, 1997). We will refer to these sys-
tems as Differential Inequality Systems. In particular,
this system description allows for dynamics which
are nonlinear and time-varying. Also, the system de-
scription considered in this paper is closely related
to the time-domain IQC uncertainty description; e.g.,
see (Petersen et al., 2000). The time domain IQC un-
certainty description has been found to yield tractable
solutions to problems of minimax optimal control and
state estimation; e.g., see (Petersen et al., 2000).

The paper is concerned characterizing equivalences
and inclusion relations for differential inequality sys-
tems described in terms of quadratic differential
forms. One differential inequality system is said to
be a superset of another if the set of behaviours of
the first system contains the set of behaviours of the
second system. Also, if two differential inequality sys-
tems described in terms of two quadratic differential
forms have the same set of behaviours then they are
equivalent. In problems of uncertainty modelling in
which one begins with a differential inequality sys-
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tem model of a process, one might seek to find a
simpler differential inequality system model which is
equivalent to the original system model. Also, in some
circumstances, one might be prepared to replace the
original differential inequality system model with a
simpler differential inequality system model which is
a superset of the original differential inequality system
model.

It should be noted that a very complete theory of mini-
mality and equivalence for a class of uncertain systems
has been developed in the papers (Beck, 1994; Beck
et al., 1996; Beck and D’Andrea, 1997; Beck and
Doyle, 1999). However these papers consider a dif-
ferent class of uncertain systems than the differential
inequality systems considered in this paper. Also, our
notions of system equivalence and inclusion are quite
different than those considered in these papers.

The remainder of the paper proceeds as follows. In
Section 2, we introduce the class of differential in-
equality systems under consideration. We also include
definitions concerning the relationship between two
differential inequality systems and the equivalence
of two differential inequality systems. This section
also recalls a standard S-procedure result and a re-
sult on quadratic differential forms from (Willems and
Trentelman, 1998). These preliminary results will be
used in the proof of our main result.

In Section 3, we present our main result character-
izing when a given differential inequality system is
a superset of another differential inequality system.
This result is given in terms of a frequency domain
condition. This in turn leads to a frequency domain
condition for the equivalence of two differential in-
equality systems. In Section 4, we present a simple
example which illustrates our main results.

2. DEFINITIONS AND PRELIMINARY RESULTS

We first introduce our definition of differential in-
equality system. Such systems can be regarded as a
type of uncertain system defined within a behavioural
framework; e.g., see (Polderman and Willems, 1998)
for further details on the behavioural approach to the
modelling of dynamical systems. In this definition,� q×q

s [ζ ,η ] denotes the set of real symmetric q× q
polynomial matrices in the (commuting) indetermi-
nates ζ and η . An element Φ ∈

� q×q
s [ζ ,η ] is thus

given by

Φ(ζ ,η) = ∑
k,`

φk`ζ
kη`

where

φk,` = φ T
`,k.

Definition 1. Let Φ ∈
� q×q

s [ζ ,η ] be given. The dif-
ferential inequality system ΣΦ is defined by ΣΦ :=
(

�
,

� q , � Φ) with

� Φ := {w ∈ � (
�
,

� q) :
∫ ∞

−∞
QΦ(w)dt ≥ 0}.

Here

� (
�
,

� q ) :=

{

w ∈ � ∞(
�
,

� q ) :
w has compact support

}

,

QΦ(w) := ∑
k,`

(

dkw
dtk

)T

φk`

(

d`w
dt`

)

. (1)

Note that ΣΦ is parametrized by Φ.

Remarks To illustrate the above definition, consider
a linear system described by an equation of the
form R

(

d
dt

)

w = 0; e.g., see (Polderman and Willems,
1998). Here R(s) is a real polynomial matrix. Now
observe that

{w ∈ � (
�
,

� q ) : R

(

d
dt

)

w = 0}

=







w ∈ � (
�
,

� q ) :
∫ ∞

−∞
−

(

R

(

d
dt

)

w

)T

R

(

d
dt

)

wdt ≥ 0







= {w ∈ � (
�
,

� q ) :
∫ ∞

−∞
QΦR

(w)dt ≥ 0} (2)

where ΦR(ζ ,η) = −RT (ζ )R(η). Thus, our class of
differential inequality systems includes linear be-
havioural systems; e.g., see (Polderman and Willems,
1998).

To further motivate the above definition and to relate
it to more standard notions of an uncertain system,
consider the following simple example. Suppose u is
the system input and y is the system output and let

w =

[

u
y

]

.

Also, let

Φ(ζ ,η) =

[

0 1
1 0

]

.

Then the corresponding differential inequality system
is characterized by the set of behaviours

{[u,y] ∈ � (
�
,

� q ) :
∫ ∞

−∞
2uydt ≥ 0}.

This system includes all sector bounded static nonlin-
earities of the form y = f (u) where σ f (σ)≥ 0 for all
σ .

Our main aim is to look at conditions under which
a given differential inequality system is a superset
of another given differential inequality system in the
following sense.

Definition 2. Suppose ΣΦ1
and ΣΦ2

are two differ-
ential inequality systems defined as in Definition 1.
Then, we write ΣΦ1

≤ ΣΦ2
if � Φ1

⊂ � Φ2
. Also,

we write ΣΦ1
= ΣΦ2

if � Φ1
= � Φ2

. Clearly, ΣΦ1
=

ΣΦ2
if and only if ΣΦ1

≤ ΣΦ2
and ΣΦ2

≤ ΣΦ1
Note



that this definition defines an equivalence relation on� q×q
s [ζ ,η ]. Indeed, if ΣΦ1

= ΣΦ2
, we write Φ1 ∼ Φ2.

Given two differential inequality systems ΣΦ1
and

ΣΦ2
, our main result is concerned with the questions:

When is ΣΦ1
≤ ΣΦ2

and when is ΣΦ1
= ΣΦ2

. This
result involves the use of the following well known S-
procedure theorem for two quadratic forms (e.g., see
(Yakubovich, 1973; Petersen et al., 2000) for proof).

Lemma 3. Let
�

be a real linear vector space and�
1(x),

�
2(x) be quadratic functionals on

�
. That is,�

1(x) and
�

2(x) are functionals of the form

�
1(x) = G1(x,x)+g1(x)+ γ1,�
2(x) = G2(x,x)+g2(x)+ γ2 (3)

where G1(x1,x2) and G2(x1,x2) are bilinear forms on�
×

�
, g1(x), g2(x) are linear functionals on

�
, and

γ1, γ2 are constants. Assume that there exists a vector
x0 ∈

�
such that

�
1(x0) > 0. Then, the following

conditions are equivalent:

(i)
�

2(x)≥ 0 for all x such that
�

1(x)≥ 0;
(ii) There exists a constant τ ≥ 0 such that

�
2(x)− τ

�
1(x)≥ 0 (4)

for all x ∈
�

.

Notation Associated with a quadratic differential
form QΦ(w) defined as in (1) is a corresponding poly-
nomial matrix ∂Φ ∈

� q×q
s [ξ ] defined by

∂Φ(ξ ) := Φ(−ξ ,ξ ).

Lemma 4. Consider a quadratic differential form QΦ(w)
defined as above. Then

∫ ∞

−∞
QΦ(w)dt ≥ 0 ∀w ∈ � (

�
,

� q ).

if and only if ∂Φ(iω)≥ 0 ∀ω ∈
�
,

PROOF. This result follows directly from Proposi-
tion 5.2 of (Willems and Trentelman, 1998).
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3. THE MAIN RESULT

We now present our main result.

Theorem 5. Let Φ1, Φ2 ∈
� q×q

s [ζ ,η ] be given. Then
ΣΦ1

≤ ΣΦ2
if and only if either of the following

conditions hold:

(i) There exists a τ ≥ 0 such that

τ∂Φ1(iω)≤ ∂Φ2(iω) ∀ω ∈
�
. (5)

(ii)

∂Φ1(iω)≤ 0 ∀ω ∈
�

and

m(−iω)T ∂Φ2(iω)m(iω)≥ 0

for all m(ξ )∈
� q [ξ ] such that ∂Φ1(ξ )m(ξ ) = 0.

The proof of this theorem relies on the following
lemmas.

Lemma 6. Let Φ ∈
� q×q

s [ζ ,η ] be given. Then there
exists a w ∈ � (

�
,

� q ) such that
∫ ∞

−∞
QΦ(w)dt > 0 (6)

if and only if there exists an ω ∈
�

such that ∂Φ(iω) �
0.

PROOF. This proof follows the proof of Theorem
3.1 and Proposition 5.2 in (Willems and Trentelman,
1998). Suppose ∂Φ(iω0) � 0. Then there exists an
a ∈ � q such that

a∗∂Φ(iω0)a > 0.

Now define a sequence of functions wN(t)∈ � (
�
, � q ),

N = 1,2, . . . , by

wN(t) =











































eiω0t a for |t| ≤
2πN
ω0

,

w̃(t +
2πN
ω0

) for t <−
2πN
ω0

,

w̃(t−
2πN
ω0

) for t >
2πN
ω0

.

Here w̃(·) is a function chosen independently of N
so that wN(t) ∈ � (

�
, � q ) for all N. This is possible

because of the periodic nature of wN(t) for |t| ≤ 2πN
ω0

.

Then
∫ ∞

−∞
QΦ(wN)dt =

4πN
ω0

a∗∂Φ(iω0)a+E

with E independent of N. Hence, a∗∂Φ(iω0)a > 0,

implies that
∫ ∞
−∞ QΦ(wN)dt > 0 for sufficiently large

N. A similar conclusion can be obtained using a real
signal w(t) by taking real and imaginary parts of
wN . Thus, we can conclude that there exists a w ∈
� (

�
,

� q ) such that (6) holds.

Conversely, suppose there exists a w ∈ � (
�
,

� q ) such
that (6) holds. Let ŵ(iω) be the Fourier Transform of
w(t). Then using Parseval’s Theorem, (6) implies

∫ ∞

−∞
ŵ(−iω)T Φ(−iω , iω)ŵ(iω)dω > 0.

Hence, there exists a ω0 ∈
�

such that

ŵ(−iω0)
T ∂Φ(iω0)ŵ(iω0).

Thus, ∂Φ(iω0) � 0. This completes the proof of the
Lemma.
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Lemma 7. Let R ∈
� p×q [ξ ] and Φ ∈

� q×q
s [ζ ,η ] be

given. Then

{w ∈ � (
�
,

� q) : R(
d
dt

)w = 0}

⊂ {w ∈ � (
�
,

� q ) :
∫ ∞

−∞
QΦ(w)dt ≥ 0} (7)

if and only if

m(−iω)T ∂Φ(iω)m(iω) ≥ 0 ∀ω ∈
�

(8)

for all m(ξ ) ∈
� q [ξ ] such that R(ξ )m(ξ ) = 0.

PROOF. Suppose the condition (8) holds and let w =
M( d

dt )` be the image representation of the controllable
part of the behavioural system defined by R( d

dt )w = 0.
Hence, R(ξ )M(ξ ) = 0. It follows from (8) that

M(−iω)T ∂Φ(iω)M(iω) ≥ 0 ∀ω ∈
�
.

Thus, given any w ∈ � (
�
,

� q ) such that R( d
dt )w = 0,

then we can write w = M( d
dt )`. Hence, using Parse-

val’s Theorem,

∫ ∞

−∞
QΦ(w)dt

=

∫ ∞

−∞
ˆ̀(−iω)T M(−iω)T ∂Φ(iω)M(iω) ˆ̀(iω)dω

≥ 0

where ˆ̀(iω) is the Fourier Transform of `(t). Thus, (7)
holds.

To prove the converse part of the lemma, suppose that
condition (8) does not hold. That is, there exists a a ∈

� , m(ξ ) ∈
� q [ξ ] and ω0 ∈

�
such that R(ξ )m(ξ ) = 0

and

a∗m(−iω0)
T ∂Φ(iω0)m(iω0)a < 0. (9)

Also, define a sequence of functions `N(t)∈ � (
�
, � r ),

N = 1,2, . . . , by

`N(t) =











































eiω0t a for |t| ≤
2πN
ω0

,

l̃(t +
2πN
ω0

) for t <−
2πN
ω0

,

l̃(t −
2πN
ω0

) for t >
2πN
ω0

.

Here l̃(·) is a function chosen independently of N
so that lN(t) ∈ � (

�
, � q ) for all N. This is possi-

ble because of the periodic nature of `N(t) for |t| ≤
2πN
ω0

. Also, define a corresponding sequence of func-

tions wN(t) ∈ � (
�
, � r ), N = 1,2, . . . , so that wN =

m( d
dt )`N . It follows from R(ξ )m(ξ ) = 0 that

R(
d
dt

)wN = 0

for all N. Also, we can write

∫ ∞

−∞
QΦ(wN)dt

=
4πN
ω0

a∗m(−iω0)
T ∂Φ(iω0)m(iω0)a+E

where E is independent of N. Thus, it follows from (9)
that for sufficiently large N,

∫ ∞

−∞
QΦ(wN)dt < 0.

A similar conclusion can be obtained using a real
signal `(t) by taking real and imaginary parts of `N .
Thus, condition (7) does not hold. This completes the
proof of the lemma.
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PROOF OF THEOREM 5. We consider two cases:

Case 1. There exists an ω ∈
�

such that ∂Φ1(iω) � 0.
In this case, condition (ii) of the theorem cannot hold
so we prove ΣΦ1

≤ ΣΦ2
if and only if condition (i)

of the theorem holds. Indeed, suppose that (5) holds.
Hence

∂Φ2(iω)− τ∂Φ1(iω)≥ 0 ∀ω ∈
�
.

Then it follows from Part 1. of Lemma 4 that
∫ ∞

−∞

(

QΦ2
(w)− τQΦ1

(w)
)

dt ≥ 0 ∀w ∈ � (
�
,

� q ).

(10)

For any w ∈ � Φ1
, it follows that
∫ ∞

−∞
QΦ1

(w)dt ≥ 0.

Hence, using (10), we conclude

∫ ∞

−∞
QΦ2

(w)dt ≥ τ
∫ ∞

−∞
QΦ1

(w)dt

≥ 0.

Thus, w ∈ � Φ2
. However, since w ∈ � Φ1

was arbi-
trary, we conclude that � Φ1

⊂ � Φ2
. That is, ΣΦ1

≤

ΣΦ2
.

We now suppose ΣΦ1
≤ ΣΦ2

. That is, w ∈ � (
�
,

� q )

such that
∫ ∞

−∞
QΦ1

(w)dt ≥ 0

implies
∫ ∞

−∞
QΦ2

(w)dt ≥ 0.

Now define quadratic functionals
�

1,
�

2 on � (
�
,

� q )
as follows:

�
1(w) :=

∫ ∞

−∞
QΦ1

(w)dt,

�
2(w) :=

∫ ∞

−∞
QΦ2

(w)dt.

It follows that
�

2(w) ≥ 0 for all w ∈ � (
�
,

� q ) such
that

�
1(w) ≥ 0. Also, it follows from Lemma 6 that



there exists a ω ∈
�

such that
�

1(w) > 0. Hence, it
follows from Lemma 3 that there exists a constant τ ≥
0 such that

�
2(w)− τ

�
1(w)≥ 0 for all w ∈ � (

�
,

� q ).
That is

∫ ∞

−∞

(

QΦ2
(w)− τQΦ1

(w)
)

dt ≥ 0

for all w ∈ � (
�
,

� q ). Thus, it follows from Part 2. of
Lemma 4 that

∂Φ2(iω)− τ∂Φ1(iω)≥ 0 ∀ω ∈
�
.

That is, condition (5) is satisfied. This completes the
proof for case 1.

Case 2. ∂Φ1(iω) ≤ 0 for all ω ∈
�

. In this case
� Φ1

is the controllable part of the behavioural system

{w ∈ � (
�
,

� q ) : ∂Φ1(
d
dt )w = 0}. Hence, it follows

from Lemma 7 that

� Φ1
⊂ � Φ2

if and only if

m(−iω)T ∂Φ2(iω)m(iω)≥ 0 ∀ω ∈
�

for all m(ξ ) ∈
� q [ξ ] such that ∂Φ1(ξ )m(ξ ) = 0. That

is, condition (ii) holds. This completes the proof case
2.
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4. EXAMPLE

In this section, we present an example which illus-
trates the above results: We will illustrate Theorem
5 by considering two differential inequality systems
of the form defined in Definition 1. Our first system
corresponds to the linear input-output system with
transfer function:

Y (s)
U(s)

=
1

(1+ s)2 .

If we write

w =

[

u
y

]

,

then this transfer function corresponds to the follow-
ing behavioural constraint:

R1(
d
dt

)w = 0

where R1(s) = [1 − (1+ s)2]. Then as in (2), we can
define a corresponding differential inequality system
ΣΦ1

with

Φ1(ζ ,η) =−RT
1 (ζ )R1(η)

=

[

−1 (1+η)2

(1+ζ )2 −(1+η)2(1+ζ )2

]

.

To define our second differential system, consider a
linear input-output system with transfer function

Y (s)
U(s)

=
1−δ1

s−δ2

where δ1 and δ2 are real uncertain parameters satisfy-
ing the bound δ 2

1 + δ 2
2 ≤ 1. We can ‘overbound’ the

behaviour corresponding to this collection of transfer
functions by an differential inequality system of the
form defined in Definition 1 as follows: Let

w =

[

u
y

]

.

Then the above transfer function implies the following
behavioural constraint:

[1 −
d
dt

]w = [δ1 δ2]

[

1 0
0 −1

]

w.

Hence,

∫ ∞

−∞

(

R2(
d
dt

)w

)T

R2(
d
dt

)wdt

=

∫ ∞

−∞
wT T T

2 (δ 2
1 +δ 2

2 )T2wdt

≤
∫ ∞

−∞
wT T T

2 T2wdt

where

R2(s) = [1 − s]; T2 =

[

1 0
0 −1

]

.

Then as in Section 2, we can define a corresponding
differential inequality system ΣΦ2

with

Φ2(ζ ,η) = T T
2 T2−RT

2 (ζ )R2(η) =

[

0 η
ζ 1−ηζ

]

.

We now use Theorem 5 to show that ΣΦ1
≤ ΣΦ2

.
Indeed, we calculate

∂Φ1(iω) =

[

−1 1+2iω−ω2

1−2iω−ω2 −1−2ω2−ω4

]

and

∂Φ2(iω) =

[

0 iω
−iω 1−ω2

]

.

Thus,

∂Φ2(iω)− τ∂Φ1(iω)

=

[

1 −1− iω +ω2

−1+ iω +ω2 2+ω2 +ω4

]

≥ 0

for τ = 1. Hence, using Theorem 5, we can conclude
that ΣΦ1

≤ ΣΦ2
.
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