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Abstract: The paper deals with the local sensitivity analysis of the discrete-time infinite-
horizon H*° estimation problem. Both linear and nonlinear perturbation bounds are derived
for the solution of the matrix Riccati equation that determines the sensitivity of the problem.
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1. INTRODUCTION — the vec-permutation matrix such thatc(X ") =

_ Ilvec(X) forall X € R"*"; A® B = [a;; B] — the

In the last 15 years, considerable research has bee'l’(roneckerproduct of the matricesandB; ||-||» — the
done in the field ofH>° estimation, see for instance spectral (or 2-) norm iR™*™; |||y — the Frobenius

(Hassibiet al, 1999) and the references therein. Im- (or F_) norm inR™*™. The notation ‘= stands for
portant theoretical results have been obtained for both:gqya| by definition’.

continuous-time and discrete-time systems. However,

the computational aspects of thE* estimation have 2. PROBLEM STATEMENT

not been studied in a sufficient extent. For this reason,

designing and implementing > filters often lead to ~ Consider the linear discrete-time system

serious difficulties. This is due to the use of unreliable
computational tools and to the lack of sensitivity esti- )
mates for thel/ > estimation problem. yi = Hxitwv, i20 @)
s; = Lux;

Tit1 = Fx; + Gu;

This paper presents a local perturbation analysis of the
matrix Riccati equation that determines the sensitivity
of the discrete-time infinite-horizoi{ > estimation

problem. Using the approach developed in (Konstanti-
novet al, 1987, 1999a, b), linear perturbation bounds

for this equation are first derived in terms of condition distribution matrices. The pait&, H) and(F, G) are

numbers relative to perturbation in .the data. '!'hen, assumed to be respectively detectable and controllable
a first order homogeneous perturbation bound is ob—On the unit circle

tained, which in general is tighter than the condition

number based perturbation bounds. Given the system (1) and a constant > 0, the
infinite-horizonH , filtering problem consists in find-
ing a stable estimator (filter) for;, achieving

wherex; € R", y; € RP, u; € R™ andv; € RP

are respectively the state, observation and disturbance
vectors,s; € RY is linear combination of the state

to be estimated and’, G, H, L are known constant

The following notations are used later go™**" — the
space of real xn matrices;,, —the unitn xn matrix;
AT = [a;;] — the transpose of the matrix = [a,,]; 1T(2)]loc <

vec(A) € R™ — the column-wise vector represen- whereT'(z) is the transfer matrix relating the distur-
tation of the matrixA € R™*"™; I, € R xn’ bances{u;,v;} to the estimation errorgs; — 5;;}.



Here 3;; denotes the estimation af using the ob-
servations{yy }x=1,... ;.

The so-called "central solution” of this problem can
be written as (Hassildt al., 1999)

Tiq1 = Fag); + Ki(yi — Hig)) (2)
8ili = Ly + Ka(ys — Hiypi)

where #;; denotes the estimation af; using the
observationgyy }x=1,... ;- The gain matriced(; and
K, are defined by

Ky =-FPH (I, + HP,H")™!

Ky=LPyH"(I, + HRyH")™!

where Py, > 0 is the stabilising solution of the
discrete-time algebraic Riccati equation

P=FPF" +GG" — KRK' (3)
with
K=FPH" LT|IR™! 4)
_ | 0 H T7T
R—[O_szq}—k{L}P[H L. (5)

In the sequel we shall write equation (3) in the equiv-

alent form

F(P,D)PF" —P+GG" =0 (6)
where

F(P,D)=F - FPC'R™'C

C=[H"L"" (7)

D= (F,C).

Suppose thatF, G, H, L in (6), (7) are subject to
perturbationAF', AG, AH, AL. Then the perturbed
equation is

F(P,D + AD)P(F + AF)T

—P+(G+AG)(G+AG)T =0 ©)

whereAD = (AF,AC), AC = [AHT ALT]T,
F(P,D + AD) = (F + AF)
— (F+AF)P(C+AC)"R™Y(P,D+ AD)
x(C + AC)
and
R(P,D+ AD) = R(P,D) + ACPC"
+ CPAC" + ACPACT.

Since the Fechet derivative of the left-hand side of (6)
in P at P = P, is invertible, the perturbed equation
(8) has a unique solutio®® = Py + AP in the
neighborhood of.

DenoteA,; = ||[AM||r the absolute perturbation of
amatrix M and letA := [Afr, Ag, AC]T € R3.

The problem considered in this paper is to find first
order local bounds of the type

Ap < F(B) +O(|AIP), A =0, (9

for the perturbatiomA p := ||AP||r in the solution of
the Riccati equation (6). Local linear bounds

Ap < KpAp + KeAg + KcAc + O([|Al%)
and
AP S \/gKRAmax + O(||A||2)

shall be first obtained, whet€r, K5 and K are the
individual condition numbers of (6)5 is the overall
condition number of (6) and;,.x = max{Ar, Ag, Ac}.
Then, a tighter perturbation bound of type (9) will
be derived, wheref is not a linear but a first order
homogeneous function af.

3. CONDITION NUMBERS
Denoted (P, D) the left-hand side of the Riccati equa-
tion (6). Then

&(Py, D) = 0. (10)

SettingP = Py + AP, the perturbed equation (8) may
be written as

®(Py + AP,D + AD) = 1)
®(Py, D) + ®p(AP) + Bp(AF) + 06(AG)
+®c(AC) + S(AP,AD) =0

where®p(.),Pr(.) and®s(.),2-(.) are the Fechet
derivatives of®(P, D) in the corresponding matrix
arguments, evaluated fd? = Py, and S(AP, AD)
contains the second and higher order term\iR,
AD.

It can be shown that

Op(Z2)=FZF) —Z (12)
Op(Z)=FyPyZ + Z" Py F,
dc(Z2)=GZ+Z'G"

(2)

®c(Z)=—-FyPyZRy*CPyFT
~FP Ry'ZT Py F)
where

Fy = F(Py,D), Ry= R(P,,D).
It follows from (10), (11)
Op(AP)=—-Dp(AF) — Pc(AG) — 2 (AC)
— S(AP,AD). (13)

SinceF is stable, the operatdrp(.) is invertible and
(13) yields



AP =—®3' 0 ®p(AF) — 05! 0 B (AG) (14) Ap = |AP[p = [[vec(AP)|2

—05 0 ®(AC) — B (S(AP,AD)). < est1(A,N) + O(J|Al?) (22)
From relation (14) we obtain = [[Nill2AF +[|Noll28¢ + [[Nsl2A¢
2
Ap < KpAp + KgAg + KcAc + O(||Al%) (15) +O(IA[)
where = KpAp + KgAg + KcAc
o =y ol fa = vl (16) +O(JA%). A—0
_ -1
Kc =2p o ®c. whereN := [Ny, Ny, Ns].
Here|| .|| is the induced norm in the corresponding Relation (21) also gives
space of linear operators. )
Ap < esta(A,N) + O([|A%) (23)

Denote byMp € R" "', Mp € R" ", Mg € ,
R 7" andMe € R™ " the matrix representations = ||N[l2[[Allz + O([|A[]F), A — 0.

of the operator®p (), 2r(.), 2a(.) andec(.): The boundsest; (A, N) andesto(A, N) are alterna-
_ _ tive, i.e. which one is less depends on the particular
Mp=Fy® Fy — 1,2 value ofA.

Mp=1,® FyPy+ (FoPy @ I)IT  (17) There is also a third bound, which is always less than

or equal toest; (A, N). We have
Mg=1,®G+ (G& I,)II

McszP()CTRal ®F0P0 Ap < eSt3(A’N) + O(HA||2) (24)
_(F()P()@FPOCTRal)H — /ATU(N)A + O(HA”z), A —0
n2‘n2 . .

Herell € RT denotes the permutation matrix such wherelU (N) is the3 x 3 matrix with elements

that ve¢M ') = Ilveq M) for eachM € R™*". -

Thus uij(N) = [N;' Njl2-

Kp = |Mp'Mpl2, Ko =|IMp' Mg Since
(18) 1NN, < INill2 1N 2

Ko = |Mp' M.

we obtain

From relation (14), we can also deduce that est3(A, N) < est1 (A, N).

Ap < V3 Kr Apax + O(||A||2), A—0 (19 Hence we have the overall estimate
where Ap <est(A,N)+O([|A[*), A—=0 (25)
Kr = || Mp' [Mp, Mg, Mc]|l  (20)  where
est(A, N) := min{est2 (A, N),est3(A, N)}. (26)

4. FIRST ORDER HOMOGENEOQOUS ESTIMATE
The local boundkst(A, N) in (25), (26) is a nonlinear
The linear perturbation bounds (15) and (19) may first order homogeneous and piece-wise real analytic
eventually produce pessimistic results. At the samefunctioninA.
time it is possible to derive a local first order homo-

geneous bound which is tighter in general. 5. NUMERICAL EXAMPLE
The operator equation (14) may be written in a vector
form as Consider a third order system of type (1) with matrices

F=VE)V, G=VGq, C=[H" LT =CuV
vec(AP) = Nyvec(AF) + Novec(AG) (21) andp = 2, ¢ = 1, where

+ Navec(AC) — Mp ' vee(S(AP, AD)) V=120 /3, v=[1,1,1]"

where Fy = diag~2,1,0), G4 = Cy = diag(l,1,1).

Ny = —Mz'Mp, Ny := —Mzy'Mg,
The perturbations considered in the data satisfy

AF =VAF;V, AG=VAGy, AC = ACV
The linear bound (15), (18) is a corollary of (21): where

N3 := —Mp'Mc.



AF; = diag(1,1,1) x 10~ 6. CONCLUSION

AGq4 = diag(10,10,1) x 107 In this paper the local sensitivity of the discrete-time
. - infinite-horizon H*° estimation problem is studied.
ACq = diag(10,1,0) x 10 Local linear and nonlinear perturbation bounds are
fori =10.9.....9. obtained for the Riccari equation that determines the
Y ’_ sensitivity of the problem. The linear bounds are de-
Note that for this problem the unperturbed and per- yiyed in terms of condition numbers relative to data
turbed Riccati equations (6) and (8) have closed form perturbations. The nonlinear perturbation bound is ob-

solutionsFy and Py + AP. tained by using a first order homogeneous function

The relative perturbation p /|| Py |  in the solution and is tighter than its linear counterparts.
are estimated by the linear bound (19) and the nonlin-
ear homogeneous bound (25). The results obtained for
~ = 1.1 and different values afare shown in Table 1.
The actual relative changes in the solution are closedHassibi, B., A.H. Sayed and T. Kailath (1998)defi-
to the quantities predicted by the local sensitivity anal- nite-Quadratic Estimation and Control: A Uni-
ysis. fied Approach toH, and H., Theories.SIAM,
Table 1 Philadglphia. _
Konstantinov, M.M., N.D. Christov and P.Hr. Petkov
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