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Abstract: Ellipsoidal outer-bounding under model uncertainty is a natural extension of state
estimation for models with unknown-but-bounded errors. The technique described in this
paper applies to linear discrete-time dynamic systems. Many difficulties arise because of
the non-convexity of feasible sets. Analytical optimal or suboptimal solutions are presented,
which are counterparts in this context of uncertainty to classical approximations of the sum
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1. INTRODUCTION the references therein. The most recent results can be
found in (Durieuet al, 2001).

However, most of the above mentioned works deal

In the literature, most parameter or state estimation . .
problems are solved via a stochastic approach, withWIth problems where the plant model (its structure,

the noise assumed to be random. Kalman filtering is n th? case of parameter estimation) is ass_umed to be
the typical technique for such an approach. Often, precisely known and_ where all the uncertalnty_relates_
however, the underlying probabilistic assumptions are to external perturbations and measurement noise. This

not realistic (the main perturbation may for instance ?ssum_?::onl sekerr}s unrgal|§tl? for T.OSI .re?rL-llftfa p:job—
be deterministic). It is then more natural to assume ems. The fack of precise information 1S he funda-

that these perturbations are unknown-but-bounded and" ental {:)afradtl)grrl of mO(Ijern ccl)(ntrol 'lthe%r]y, Whelrefiug
to characterize the set of all values of the parameterconcep Ot r(()j us Iness P ags? eyro e.h te goalo i 'Sd
or state vector that are consistent with this hypothe- paper Is o develop a robust approach o guarantee

sis. This corresponds tguaranteed estimatigrfirst estima}tion, l.e. to ﬁnd. .methods to take ipto ac_count
considered in the early seventies (Schweppe, 1973;gnav.mdable bl_Jt specified model uncertainty with el-
Bertsekas and Rhodes, 1971). Russian researcheljépSOIdaI techniques.

A.B. Kurzhanskii and F.L. Chernousko further devel- Consider a linear discrete-time dynamic system with
oped ellipsoidal techniques for guaranteed parametetthe state equation

and state estimation (Kurzhanskii, 1977; Chernousko,

1994; Kurzhanskii and Valyi, 1996). Important con- Xern = At Wi (1)
tributions have been presented in (Fogel and Huang,and the measurement equation

1982), in the context of parameter estimation. At

present, the theory of guaranteed estimation is a well Yie = G+ Vie (2)
developed and mature area of control theory, see, e.gA sequence of known inputg could easily be incor-
the survey monograph (Milanestal, 1996), special  porated in the state equation (1). It is not introduced
issues of journals (Norton, 1994, 1995; Walter, 1990), for the sake of notational simplicity. The classical
chapters in the book (Walter and Pronzato, 1997) andunknown-but-bounded approach (Schweppe, 1973;



Bertsekas and Rhodes, 1971; Kurzhanskii, 1977;

Chernousko, 1994; Kurzhanskii and Valyi, 1996; Fo-
gel and Huang, 1982; Milaneset al., 1996; Nor-

ton, 1994, 1995; Walter, 1990; Walter and Pronzato,

1997; Durieuet al,, 2001) is based on the assumption
that the matrice#\ , C, are known while the external
perturbation vectow, and measurement noise vector
v, are subjected to the constraints

Il < By, ®3)

with a,, B, known. The problem is then to find a guar-
anteed estimate fox, provided that measurements
Y1,-- Yy and some prior information relating g are

Wl < o,

available. Particular cases are: estimation of the at-

tainability set (without measuremen®:=0, v, =0),
parameter estimation (without dynamigg.=1, w, =

0, x, = 6) and parameter tracking\{ = I, x_ = 6,).
The traditional technique is recursively to compute
ellipsoids guaranteed to contaip

maxeig(AT A))Y/2. Similar models arise in other prob-
lems related to systems under uncertainty, such as total
least squares (Golub and Van Loan, 1980; El Ghaoui
and Lebret, 1997) and robust optimization (Ben-Tal
et al, 2000; El Ghaoui and Calafiore, 1999). It can
be proved that the set of all statgsconsistent with

a given numerical value of the data vecigris de-
scribed by a quadratic constraint with indefinite ma-
trix. A technique to treat such constraints is developed
in (Polyak, 1998); thus the minimal ellipsoid contain-
ing the intersection of this set with an ellipsoid can
be constructed effectively. Such an approach provides
an opportunity to extend ellipsoidal outer-bounding
techniques to uncertain models; this is the main con-
tribution of the paper.

2. PRELIMINARIES

The present research deals with a more general probThe notatiorP > 0 (P > 0) for a matrixP = PT means

lem where in addition to state perturbation and mea-

that P is positive definite (nonnegative definite). An

surement uncertainty (3) the model matrices are alsoellipsoid is denoted by

uncertain:

A€ o, C.E%, (4)

E(c,P) = {x: (x—c)"P(x—c) <1}, (9)

where the vectoc € R" is the center of the ellipsoid

where,, 4, are some classes of matrices. Particular and the matriX® > O characterizes its shape and size.

cases of the general problem have been considere%\ matrix H and a vectokv are said to be admissible

in the literature (Clement and Gentil, 1990; Cerone,
1993; Kurzhanskii and Valyi, 1996; Chernousko,
1996; Rokityanskii, 1997; Norton, 1999; Chernousko
and Rokityanskii, 2000). Serious difficulties have been

(for given values ot and?) if

H2 W2
I
&

v (10)

recognized. For instance, consider a class of uncer-gsch of the inequalities (7), (8) can obviously be

tainty described by interval matrices. An interval ma-
trix A with entriewﬂ- is given by a nominal matriR®

with entriesaﬂ- and by associated ranges:
S ={A: |a1'j_a1'oj|§aij Vi, i} (5)

Then the simplest attainability set for one step wih
fixed:

X ={x =A% A€ Fy} (6)

is already not convex and its detailed description
meets combinatorial difficulties for large dimensions.

We employ another model of uncertainty, which sim-

plifies the analysis. It is assumed that the matrix un-
certainty is combined with the uncertainty due to state

expressed in the form of (10). The set of all admissible
pairs will be denoted b$. In (10),& = 0 is understood
asH = 0 and||w|| < 8, while 6 = 0 meanav=0 and
[H[| <e.

The following simple assertions will be used in the
paper.

Lemma 1.For any giverx € R", the set of pointsix+
w for all admissibleH andw is a ball:

{z=Hx+w: Hwe S} =
{z: 12? < &¥xII*+ 8%}

(11)
(12)

perturbations and measurement noise by ellipsoidalLemma 2.AssumeB, € R™", B, >0, i =0,1,2 and

constraints:

_ A0yj12 2

AR, I -
A
02 2

GBI, 1 ©
C

whereA?, C? are nominal matrices, while,, &y and
£, Oy are prespecified weights. In (7, 8) and below,
the vector norm||x||, x € R", is understood as Eu-
clidean:||x||?> = 3 X2, while the operator norm is used
for matrices: forA € R™", ||A|| = ma>$le<l||Ax|| =

there existr; >0, 1, > 0, T, + T, < 1 such that

By—1;,B; Bo )
<o. (13)
( By By—1,B,
Then
Byt > 1B+ 1By (14)

Lemma 3(Schweppe, 1973). Consider two quadratic
functions f;(x) = (x—¢)"P(x—¢;),i = 0,1, P >

0 and their weighted suni;(x) = (1 — 1) fy(x) +
Tf,(x), 0< 1 <1. Thenthe seE = {x: f;(x) <1}is

an ellipsoidg(c, P) with



P=(1-v) P,
P = (1-1)P,+ 1P,

a 15
¢ = P Y(1—1)Pycy+ TPiCy), (15)

v = (1-T1)c{Pycy+ 1CLPyC, — €T Pre,

provided thaf; > 0.

Note that we do not assume tlitis positive definite.
Note also thatit,=c, =0,thenc=0,v=0,P=P;.

The so calledS-procedure is a well-known tool in
system and control applications (Bogd al,, 1994);

it has been introduced by Yakubovich at the end o
the sixties. We need the following version of it. Given
two quadratic formsf;(x) = xTAx, i = 1,2 in RN
and real numbers;, i = 1,2, the problem is then to
characterize all quadratic fornfg(x) = x" Ayx in RN
and real numbera, such that

f,(x) <a

f;gxg < a; } = fo(x) < ap.
To say it another way, the problem is to describe
quadratic forms such thate E; NE, impliesx € E,,
whereE; = {x: f;(x) < a;}, i =0,1,2. The matrices

A, are not required to be positive definite, thus the sets
E; are not necessarily ellipsoids. Taking the weighted
sum of f; and f, (with weightst; > 0 andt, > 0),

we obtain an obvious sufficient condition for (16) to
be satisfied:

f

(16)

Ay <T A +TA, (17)

and

(18)
More interesting is that under some mild assumptions
this sufficient condition is also necessary, as indicated
by the following lemma.

ap > 1,0, + T,0,.

Lemma 4(Polyak, 1998). Supposd > 3 and there
existyy, 4, € R, X% € RY such that
Hi A+ LA, > 0, (19)
1,00 <a;, f,0) <a,. (20)

Then (16) holds if and only if there exist > 0, 7, > 0
such that the inequalities (17) and (18) are satisfied.

3. ELLIPSOIDAL STATE ESTIMATION

This section provides the main parts of the technique
for state estimation; the detailed algorithm for the re-

cursive estimation of the state of the system (1, 2) sub-

an ellipsoidg,. The problem is recursively to estimate
the sequence of attainability sets by outer-bounding
ellipsoids. We treat one step of such a procedure.

Consider

z=(A+H)x+w, (22)

wherex € R" andA € R™" is a known matrix. We
are interested in the sét of all such pointsz, when

x lies in a non-degenerate ellipsoi(c,P), P > 0,
while H, wis an admissible pair. We assufiéc, P) to

be centered at the origin, i.e.= 0. This assumption
is natural, if we deal with reachability problem with
no measurements. Indeedxjf € E(0,F,), thenx, €
E(0,R) due to the symmetry of the reachability set at
each step. Thus:

F={(A+H)x+w:

IIHIIZJr [[w]|?
g2 52
This set is not an ellipsoid; in most cases it is not
even convex (see example below). For the ellipsoidal
technique to apply, it should be embedded in some

ellipsoidE(0,Q):

x € E(O,P), <1}. (22)

F C E(0,Q). (23)

Moreover, we seek the ellipsoid with minimal size.
The most natural objective functions are

(24)
(25)

fl(Q) =tr Q_l,
f,(Q) = —IndetQ.

Functionf, (Q) is the sum of the squares of the ellip-

soidal semi-axis (trace criterion) arig(Q) relates to

its volume (determinant criterion). Thus the problem
is to minimize (24) or (25) subject to (23). The result

below reduces the problem to one-dimensional opti-
mization.

Theorem 1.Each ellipsoid in the familyg(0,Q(1))
with

Q(1) = [A(1—18°)P—1£21)~1AT +
i)t (26)
containgF for all T such that
* min 27
O<t<T 7/\min52+£2, (27)

whereA, .., is the minimal eigenvalue d?.

Moreover, the minimization of the one-dimension-

ject to the constraints (7, 8) can be easily constructeds| smooth and convex functiofy (1) = trQ(r)~?* or

from these blocks.

3.1 Approximation of sum

f,(1) = —IndetQ(7) subject to (27) provides the
minimal-trace or minimal-volume ellipsoid containing
F.

Suppose no observations take place, so only the statdhus, finding the best ellipsoid containirkg is re-

equation (1) of the dynamic system is available. As-
sume the initial state vectog € R", n > 2 belongs to

duced to a simple one-parameter optimization prob-
lem; this is the complete analog of the situation



with no model uncertainty, where one-parametric op- for example, defines a set of possible locations of the
timization is required to construct the best ellipsoid state vectok which is a strip inR". The basic tool for
for the prediction step, compare (Chernousko, 1994;the classical approximation of ellipsoid intersection is
Kurzhanskii and Valyi, 1996; Fogel and Huang, 1982; Lemma 3.

Durieuet al, 2001; Polyak, 1998). However, we assume here that the matrix in (2) is

Some simpler approximations could also be consid- uncertain:
ered. Chernousko and Rokityanskii (2000) proposed _
to obtain the ellipsoicE(0,Q) as an approximation y=(CH+H)x+w, (32)

of the sum ofE(0,P) and a ball of radius givenby  wherex € R", y € R™, C € R™" and H,w is an
E(0,r721), r = e*(max g o p) [IX[I) + 8°. Indeed, the  admissible pair. For a given vector of measurements
sum of these two ellipsoids is already convex and con-y and the nominal matri€, we need to estimate the
tainsF, and it is easy to construct an ellipsdiithat set of all state vectors that are consistent with the
contains this sum. The simplicity of such an approach above data. According to Lemma 1

is obvious. Moreover, it is valid if the initial ellipsoid 2 21102, K2

. ! . —CX|° < €&7|x 0 33

is centered at any point R". But, as illustrated by the lly 17 < €77+ 0% (33)
next example, ellipsoidal estimation will then not be or equivalently

optimal among all ellipsoids (23).

X' (CTC—e2l)x—2x"CTy+yTy— &2
Example 1.Let P = diag{1/9, 1}, A=1 ande = 1, ( ) yryy
0 = 0. ThenF is non-convex (see Fig. 1) and the <0.  (34)

ellipsoidsE (0, Q(1)) with Assume that ei§TC + €2, i.e.CTC — £2| is invertible.

Then we can rewrite the last inequality in terms of a
Q(1) = diag{1(1-91), 1(1- 1)}, (28)  quadratic form:

0< 1< 1/9, containF. In order to find the minimal (x—d)"M(x—d) < 1, (35)
ellipsoid according to (24) or (25), we need to solve
a simple equation which has a unique ragj, in the
interval (0,1/9). For example, for the trace criterion R

. . M —
the optimal matrix is JTCRICTy —yTy 1 82’

Q(t,,,) =~ diag{2.69, 6.13} 1072, (29) d=RICTy, R=CTC-_¢2. (36)

where

If, on the other hand, we seek an approximation of the The matricesR and M may not be positive or non-
sum of the ellipsoid€E(0,P) and E(0,r—?l), where negative definite. Therefore, the set obathat satisfy

r = 3 in this case, then (35) is not necessarily an ellipsoid or a strip. It depends
on the values o€ ande. Nevertheless, an ellipsoidal
Q(V) =diag{y(1—y)/9, y(1—y)/(1+8y)}, technique can be used to deal with the intersection of

(30) this set with some non-degenerate ellipsoid.
_ The main result of this section can now be stated.
0 < y < 1. The parametey can also be determined

by direct calculation for the trace or determinant crite- Theorem 2.If x belongs t&E (¢, P), P> 0 and satisfies
rion. For the trace criterion, the optimal matrix is y = (C+ H)x+w, whereH, w is an admissible pair,
A(y, ;) ~ diag{2.72, 5.52} 1072 (31)  thenxalso belongs to the ellipsol(g, Q()), with

The corresponding ellipsoid is only a suboptimal so-

lution of the state estimation problem. Both ellipsoids Q1) = (1-v)7'Q,

are represented in Figure 1 (solid and pointed line). Qr = ((11_ NP +1M), 37)
Note that the difference between them is small. But it 9=0Q ((1; T)PC+$Md)a .

becomes more significant when the algorithm is used v =(1-1)c' Pct+1d'Md—-9g Q9
recursively. O

forall Tsuchthat< r < 7" =min{1,1/(1-A.;)}-
HereA,,, is the minimal generalized eigenvalue of the
matrix pair(M, P) (the generalized eigenvalugsand
eigenvectors, of the matrix pait(M, P) are defined as
Mv, = A;Pv).

3.2 Approximation of intersection

Consider now a linear dynamic system with measure-
ments (2). An appropriate operation for the classical
ellipsoidal state estimation at the correction step is One-dimensional functiond, (1) = trQ(r)"! and
the intersection of ellipsoids. In general, ellipsoids are f,(1) = —IndetQ(7) are smooth and convex on the
considered as possibly degenerate, i.e. their matricesnterval 0< 1 < t*. Optimizing E(g,Q(1)) with re-
are only positive semi-definite. A scalar observation, spect tor with (24) or (25) gives the optimal ellipsoid



5 the trace or determinant criteria. Figure 2 shows the
resulting approximation (for the trace criterion).

] 4. CONCLUSIONS

In the present paper, an outer-bounding ellipsoidal
l technique for the estimation of the state of a linear
i dynamic system under model uncertainty (7, 8) has
been proposed. As usual, two operations have been
considered, which are at the core of construction of
] this state estimation. The first one is some general-
] ized sum of ellipsoids and the second is an intersec-
tion. The combined quadratic constraints for uncer-
- - - 2 0 2 4 6 e tain model matrix and disturbances lead to one-step
optimal estimates for systems with no measurements,
while the correction step based on similar principles
is suboptimal. We have addressed just one prediction
step and one correction step. However, using the above
techniques, it is trivial to develop recursive version
of state estimation for linear discrete-time dynamic
systems (1) with measurements (2) under uncertainties
of the form (7, 8).

Fig. 1. Attainability set

It is of interest to extend the above results for more
general models of uncertainty, for instance,igrre-
placed withBw, in (1), and more realistic constraints
than (7, 8).

5. ACKNOWLEDGEMENTS

. This work was supported by Grant INTAS-97-0782.
-3 -2 -1 0 1 2 3 4

Fig. 2. Intersection 6. REFERENCES

Ben-Tal, A., L. El Ghaoui and A.S. Ne-
mirovskii (2000). Robust semidefinite program-
ming. Handbook of Semidefinite Programmjng
R. Saigal, L. Vanderberghe, H. Wolkowicz (Eds),
139-162, Kluwer, Waterloo.

Bertsekas, D.P. and I.B. Rhodes (1971). Recursive
state estimation for a set-membership description
of uncertaintylEEE TAG 16, 117-128.

Boyd, S., L. El Ghaoui, E. Ferron and A.V. Balakrish-

To illustrate specific features of measurements with nan (1994)Linear Matrix Inequalities in System

an uncertain observation matrix, a scalar output, i.e. and Control TheorySIAM Publ., Philadelphia.

m=1, is considered. In this case an admissible vectorCerone, V. (1993). Feasible parameter set for linear

x (for fixedy) lies inside an hyperboloid iR". models with bounded errors in all variablési-

tomaticg 29, 1551-1555.
Example 2.Takem=1,n=2,y=1,C = (1, 2), Chernousko, F.L. (1994)State Estimation for Dy-

in this parametrized family containing all admissible
points. However, in contrast with the solution for the
prediction step (Theorem 1) it can be a suboptimal
estimate in the class of all ellipsoids. It will be optimal
only if the centerg andd of the sets become equal; an
assumption that is not as natural as for the prediction
step.

¢ =1.5andd = 0.5. Assume a non-degenerate prior namic System€RC Press, Boca Raton.

ellipsoid E(c,P), with ¢ = 0, P = diag{1, 1/9}. The Chernousko, F.L. (1996). Ellipsoidal approximation of
two eigenvalues oR as defined by (36) have different attainability sets for linear system with uncertain
signs, so neitheR nor M is positive or non-negative matrix (in Russian)Prikl. Matem. i Mekh, 80,
definite. We calculaté ;. = mineigM,P) = —2.953 940-950.

and 1 =min{1, 1/(1-A,;,)} = 0.253< 1. From Chernousko, F.L. and D.Ya. Rokityanskii (2000). El-
Theorem 2, the one-parametric family of ellipsoids lipsoidal bounds on reachable sets of dynamical
with matricesQ(1) and centerg(7) € R" contains the systems with matrices subjected to uncertain per-
intersection for alf such that6< 7 < 7*. The minimal turbationsJourn. Optim. Theory and ApplL04,

ellipsoid of this family could be calculated in terms of No.1, 1-19.



Clement, T. and S. Gentil (1990). Recursive mem-
bership set estimation for output-errors models.
Mathem. and Comput. in Simu82, 505-513.

Durieu, C., E. Walter and B.T. Polyak (2001). Multi-
input multi-output ellipsoidal state bounding.
Journ. Optim. Theory and ApplL11, No.2, 273—
303.

El Ghaoui, L. and H. Lebret (1997). Robust solutions
to least-squares problems with uncertain data.
SIAM Journ. Matrix Anal. and Appl18, No.4,
1035-1064.

El Ghaoui, L. and G. Calafiore (1999). Worst-case
simulation of uncertain systemRobustness in
Identification and Contrgl A. Garulli, A. Tesi,

A. Vicino (Eds), Springer, London, 134-146.

Fogel, E. and Y.F. Huang (1982). On the value of
information in system identification — bounded
noise caseAutomatica 18, 229-238.

Golub, G.H. and C.F. Van Loan (1980). An analysis
of the total least squares problens$AM Journ.
Numer. Anal.17, 883-893.

Kurzhanskii, A.B. (1977)Control and Observation
under Uncertaintyin Russian). Nauka, Moscow.

Kurzhanskii, A.B. and |. Valyi (1996)Ellipsoidal
Calculus for Estimation and ContraBirkhauser,
Basel.

Milanese, M., J. Norton, H. Piet-Lahanier and E. Wal-
ter (Eds), (1996)Bounding Approaches to Sys-
tem IdentificationPlenum, New York.

Norton (Ed.), J. (1994, 1995). Special issues on
bounded-error estimation, 1, thtern. Journ. of
Adaptive Control and Signal. Prac3, No.1, 9,
No.2.

Norton, J. (1999). Modal robust state estimation with
deterministic specification of uncertaintiRo-
bustness in Identification and Contydl. Garulli,

A. Tesi, A. Vicino (Eds), 62—-71, Springer, Lon-
don.

Polyak, B.T. (1998). Convexity of quadratic transfor-
mations and its use in control and optimization.
Journ. Optim. Theory and AppR9, No.3, 553—
583.

Rokityanskii, D.Ya. (1997). Optimal ellipsoidal esti-
mates of attainability sets for linear systems with
uncertain matrix (in Russian)zvestiya RAN.
Theor. i Syst.Upr.No.4, 17-20.

Schweppe, F.C. (1973)ncertain Dynamic Systems
Prentice Hall, Englewood Cliffs.

Walter (Ed.), E. (1990). Special issue on parame-
ter identification with error boundlathem. and
Comput. in Simu).32, No.5-6.

Walter, E. and L. Pronzato (1997)dentification
of Parametric Models from Experimental Data
Springer, London.



