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Abstract: Ellipsoidal outer-bounding under model uncertainty is a natural extension of state
estimation for models with unknown-but-bounded errors. The technique described in this
paper applies to linear discrete-time dynamic systems. Many difficulties arise because of
the non-convexity of feasible sets. Analytical optimal or suboptimal solutions are presented,
which are counterparts in this context of uncertainty to classical approximations of the sum
and intersection of ellipsoids.Copyright © 2002 IFAC
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1. INTRODUCTION

In the literature, most parameter or state estimation
problems are solved via a stochastic approach, with
the noise assumed to be random. Kalman filtering is
the typical technique for such an approach. Often,
however, the underlying probabilistic assumptions are
not realistic (the main perturbation may for instance
be deterministic). It is then more natural to assume
that these perturbations are unknown-but-boundedand
to characterize the set of all values of the parameter
or state vector that are consistent with this hypothe-
sis. This corresponds toguaranteed estimation, first
considered in the early seventies (Schweppe, 1973;
Bertsekas and Rhodes, 1971). Russian researchers
A.B. Kurzhanskii and F.L. Chernousko further devel-
oped ellipsoidal techniques for guaranteed parameter
and state estimation (Kurzhanskii, 1977; Chernousko,
1994; Kurzhanskii and Valyi, 1996). Important con-
tributions have been presented in (Fogel and Huang,
1982), in the context of parameter estimation. At
present, the theory of guaranteed estimation is a well
developed and mature area of control theory, see, e.g.
the survey monograph (Milaneseet al., 1996), special
issues of journals (Norton, 1994, 1995; Walter, 1990),
chapters in the book (Walter and Pronzato, 1997) and

the references therein. The most recent results can be
found in (Durieuet al., 2001).

However, most of the above mentioned works deal
with problems where the plant model (its structure,
in the case of parameter estimation) is assumed to be
precisely known and where all the uncertainty relates
to external perturbations and measurement noise. This
assumption seems unrealistic for most real-life prob-
lems. The lack of precise information is the funda-
mental paradigm of modern control theory, where the
concept of robustness plays a key role. The goal of this
paper is to develop a robust approach to guaranteed
estimation, i.e. to find methods to take into account
unavoidable but specified model uncertainty with el-
lipsoidal techniques.

Consider a linear discrete-time dynamic system with
the state equation

xk+1 = Akxk+wk (1)

and the measurement equation

yk =Ckxk+vk: (2)

A sequence of known inputsuk could easily be incor-
porated in the state equation (1). It is not introduced
for the sake of notational simplicity. The classical
unknown-but-bounded approach (Schweppe, 1973;
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Bertsekas and Rhodes, 1971; Kurzhanskii, 1977;
Chernousko, 1994; Kurzhanskii and Valyi, 1996; Fo-
gel and Huang, 1982; Milaneseet al., 1996; Nor-
ton, 1994, 1995; Walter, 1990; Walter and Pronzato,
1997; Durieuet al., 2001) is based on the assumption
that the matricesAk;Ck are known while the external
perturbation vectorwk and measurement noise vector
vk are subjected to the constraints

kwkk � αk; kvkk � βk; (3)

with αk; βk known. The problem is then to find a guar-
anteed estimate forxk provided that measurements
y1; :::;yk and some prior information relating tox0 are
available. Particular cases are: estimation of the at-
tainability set (without measurements:Ck� 0; vk� 0),
parameter estimation (without dynamics:Ak� I ; wk�
0; xk � θ ) and parameter tracking (Ak � I ; xk = θk).
The traditional technique is recursively to compute
ellipsoids guaranteed to containxk.

The present research deals with a more general prob-
lem where in addition to state perturbation and mea-
surement uncertainty (3) the model matrices are also
uncertain:

Ak 2Ak; Ck 2 Ck; (4)

whereAk; Ck are some classes of matrices. Particular
cases of the general problem have been considered
in the literature (Clement and Gentil, 1990; Cerone,
1993; Kurzhanskii and Valyi, 1996; Chernousko,
1996; Rokityanskii, 1997; Norton, 1999; Chernousko
and Rokityanskii, 2000). Serious difficulties have been
recognized. For instance, consider a class of uncer-
tainty described by interval matrices. An interval ma-
trix A with entriesai j is given by a nominal matrixA0

with entriesa0
i j and by associated rangesαi j :

Aint = fA : jai j �a0
i j j � αi j 8i; jg: (5)

Then the simplest attainability set for one step withx0
fixed:

X1 = fx1 = Ax0 : A2Aintg (6)

is already not convex and its detailed description
meets combinatorial difficulties for large dimensions.

We employ another model of uncertainty, which sim-
plifies the analysis. It is assumed that the matrix un-
certainty is combined with the uncertainty due to state
perturbations and measurement noise by ellipsoidal
constraints:

kAk�A0
kk

2

ε2
A

+
kwkk

2

δ 2
w

� 1; (7)

kCk�C0
kk

2

ε2
C

+
kvkk

2

δ 2
v

� 1; (8)

whereA0
k;C

0
k are nominal matrices, whileεA, δw and

εC, δv are prespecified weights. In (7, 8) and below,
the vector normkxk; x 2 Rn, is understood as Eu-
clidean:kxk2 = ∑x2

i , while the operator norm is used
for matrices: forA 2 Rm�n; kAk = maxkxk�1kAxk =

max(eig(ATA))1=2. Similar models arise in other prob-
lems related to systems under uncertainty, such as total
least squares (Golub and Van Loan, 1980; El Ghaoui
and Lebret, 1997) and robust optimization (Ben-Tal
et al., 2000; El Ghaoui and Calafiore, 1999). It can
be proved that the set of all statesxk consistent with
a given numerical value of the data vectoryk is de-
scribed by a quadratic constraint with indefinite ma-
trix. A technique to treat such constraints is developed
in (Polyak, 1998); thus the minimal ellipsoid contain-
ing the intersection of this set with an ellipsoid can
be constructed effectively. Such an approach provides
an opportunity to extend ellipsoidal outer-bounding
techniques to uncertain models; this is the main con-
tribution of the paper.

2. PRELIMINARIES

The notationP> 0 (P� 0) for a matrixP=PT means
that P is positive definite (nonnegative definite). An
ellipsoid is denoted by

E(c;P) = fx : (x�c)TP(x�c)� 1g; (9)

where the vectorc 2 Rn is the center of the ellipsoid
and the matrixP� 0 characterizes its shape and size.

A matrix H and a vectorw are said to be admissible
(for given values ofε andδ ) if

kHk2

ε2 +
kwk2

δ 2 � 1: (10)

Each of the inequalities (7), (8) can obviously be
expressed in the form of (10). The set of all admissible
pairs will be denoted byS. In (10),ε = 0 is understood
asH = 0 andkwk � δ , while δ = 0 meansw= 0 and
kHk � ε.

The following simple assertions will be used in the
paper.

Lemma 1.For any givenx2Rn, the set of pointsHx+
w for all admissibleH andw is a ball:

fz= Hx+w : H;w2 Sg= (11)

fz : kzk2 � ε2kxk2+δ 2g: (12)

Lemma 2.AssumeBi 2 Rn�n; Bi > 0; i = 0;1;2 and
there existτ1 > 0; τ2 > 0; τ1+ τ2� 1 such that�

B0� τ1B1 B0
B0 B0� τ2B2

�
� 0: (13)

Then

B�1
0 � τ�1

1 B�1
1 + τ�1

2 B�1
2 : (14)

Lemma 3.(Schweppe, 1973). Consider two quadratic
functions fi(x) = (x� ci)

TPi(x� ci); i = 0;1; P0 >
0 and their weighted sumfτ (x) = (1� τ) f0(x) +
τ f1(x); 0� τ � 1. Then the setE = fx : fτ (x)� 1g is
an ellipsoidE(c;P) with



P = (1�ν)�1Pτ ;
Pτ = (1� τ)P0+ τP1;

c = P�1
τ [(1� τ)P0c0+ τP1c1];

ν = (1� τ)cT
0 P0c0+ τcT

1 P1c1�cTPτc;

(15)

provided thatPτ > 0.

Note that we do not assume thatP1 is positive definite.
Note also that ifc0 = c1 = 0, thenc= 0; ν = 0; P=Pτ .

The so calledS-procedure is a well-known tool in
system and control applications (Boydet al., 1994);
it has been introduced by Yakubovich at the end of
the sixties. We need the following version of it. Given
two quadratic formsfi(x) = xTAix; i = 1;2 in RN

and real numbersαi ; i = 1;2, the problem is then to
characterize all quadratic formsf0(x) = xTA0x in RN

and real numbersα0 such that

f1(x)� α1
f2(x)� α2

�
) f0(x)� α0: (16)

To say it another way, the problem is to describe
quadratic forms such thatx2 E1\E2 impliesx2 E0,
whereEi = fx : fi(x) � αig; i = 0;1;2. The matrices
Ai are not required to be positive definite, thus the sets
Ei are not necessarily ellipsoids. Taking the weighted
sum of f1 and f2 (with weightsτ1 � 0 andτ2 � 0),
we obtain an obvious sufficient condition for (16) to
be satisfied:

A0 � τ1A1+ τ2A2 (17)

and

α0 � τ1α1+ τ2α2: (18)

More interesting is that under some mild assumptions
this sufficient condition is also necessary, as indicated
by the following lemma.

Lemma 4.(Polyak, 1998). SupposeN � 3 and there
existµ1; µ2 2 R; x0 2 RN such that

µ1A1+µ2A2 > 0; (19)

f1(x
0)< α1; f2(x

0)< α2: (20)

Then (16) holds if and only if there existτ1� 0; τ2� 0
such that the inequalities (17) and (18) are satisfied.

3. ELLIPSOIDAL STATE ESTIMATION

This section provides the main parts of the technique
for state estimation; the detailed algorithm for the re-
cursive estimation of the state of the system (1, 2) sub-
ject to the constraints (7, 8) can be easily constructed
from these blocks.

3.1 Approximation of sum

Suppose no observations take place, so only the state
equation (1) of the dynamic system is available. As-
sume the initial state vectorx0 2 Rn; n� 2 belongs to

an ellipsoidE0. The problem is recursively to estimate
the sequence of attainability sets by outer-bounding
ellipsoids. We treat one step of such a procedure.

Consider

z= (A+H)x+w; (21)

wherex 2 Rn and A 2 Rn�n is a known matrix. We
are interested in the setF of all such pointsz, when
x lies in a non-degenerate ellipsoidE(c;P); P > 0,
whileH; w is an admissible pair. We assumeE(c;P) to
be centered at the origin, i.e.c = 0. This assumption
is natural, if we deal with reachability problem with
no measurements. Indeed, ifx0 2 E(0;P0), thenxk 2
E(0;Pk) due to the symmetry of the reachability set at
each step. Thus:

F = f(A+H)x+w :

x2 E(0;P);
kHk2

ε2 +
kwk2

δ 2 � 1g: (22)

This set is not an ellipsoid; in most cases it is not
even convex (see example below). For the ellipsoidal
technique to apply, it should be embedded in some
ellipsoidE(0;Q):

F � E(0;Q): (23)

Moreover, we seek the ellipsoid with minimal size.
The most natural objective functions are

f1(Q) = tr Q�1; (24)

f2(Q) =� lndetQ: (25)

Function f1(Q) is the sum of the squares of the ellip-
soidal semi-axis (trace criterion) andf2(Q) relates to
its volume (determinant criterion). Thus the problem
is to minimize (24) or (25) subject to (23). The result
below reduces the problem to one-dimensional opti-
mization.

Theorem 1.Each ellipsoid in the familyE(0;Q(τ))
with

Q(τ) = [A((1� τδ 2)P� τε2I)�1AT +

τ�1I ]�1 (26)

containsF for all τ such that

0< τ < τ� =
λmin

λminδ 2+ ε2 ; (27)

whereλmin is the minimal eigenvalue ofP.

Moreover, the minimization of the one-dimension-
al smooth and convex functionf1(τ) = trQ(τ)�1 or
f2(τ) = � lndetQ(τ) subject to (27) provides the
minimal-trace or minimal-volume ellipsoid containing
F .

Thus, finding the best ellipsoid containingF is re-
duced to a simple one-parameter optimization prob-
lem; this is the complete analog of the situation



with no model uncertainty, where one-parametric op-
timization is required to construct the best ellipsoid
for the prediction step, compare (Chernousko, 1994;
Kurzhanskii and Valyi, 1996; Fogel and Huang, 1982;
Durieuet al., 2001; Polyak, 1998).

Some simpler approximations could also be consid-
ered. Chernousko and Rokityanskii (2000) proposed
to obtain the ellipsoidE(0;Q) as an approximation
of the sum ofE(0;P) and a ball of radiusr given by
E(0; r�2I); r = ε2(maxx2E(0;P)kxk

2)+δ 2. Indeed, the
sum of these two ellipsoids is already convex and con-
tainsF , and it is easy to construct an ellipsoideQ that
contains this sum. The simplicity of such an approach
is obvious. Moreover, it is valid if the initial ellipsoid
is centered at any point inRn. But, as illustrated by the
next example, ellipsoidal estimation will then not be
optimal among all ellipsoids (23).

Example 1.Let P = diagf1=9; 1g, A = I andε = 1,
δ = 0. ThenF is non-convex (see Fig. 1) and the
ellipsoidsE(0;Q(τ)) with

Q(τ) = diagfτ(1�9τ); τ(1� τ)g; (28)

0 < τ < 1=9, containF . In order to find the minimal
ellipsoid according to (24) or (25), we need to solve
a simple equation which has a unique rootτmin in the
interval (0;1=9). For example, for the trace criterion
the optimal matrix is

Q(τmin)' diagf2:69; 6:13g10�2: (29)

If, on the other hand, we seek an approximation of the
sum of the ellipsoidsE(0;P) and E(0; r�2I), where
r = 3 in this case, then

Q̃(γ) = diagfγ(1� γ)=9; γ(1� γ)=(1+8γ)g;
(30)

0 < γ < 1. The parameterγ can also be determined
by direct calculation for the trace or determinant crite-
rion. For the trace criterion, the optimal matrix is

Q̃(γmin)' diagf2:72; 5:52g10�2: (31)

The corresponding ellipsoid is only a suboptimal so-
lution of the state estimation problem. Both ellipsoids
are represented in Figure 1 (solid and pointed line).
Note that the difference between them is small. But it
becomes more significant when the algorithm is used
recursively. �

3.2 Approximation of intersection

Consider now a linear dynamic system with measure-
ments (2). An appropriate operation for the classical
ellipsoidal state estimation at the correction step is
the intersection of ellipsoids. In general, ellipsoids are
considered as possibly degenerate, i.e. their matrices
are only positive semi-definite. A scalar observation,

for example, defines a set of possible locations of the
state vectorx which is a strip inRn. The basic tool for
the classical approximation of ellipsoid intersection is
Lemma 3.

However, we assume here that the matrix in (2) is
uncertain:

y= (C+H)x+w; (32)

where x 2 Rn, y 2 Rm, C 2 Rm�n and H; w is an
admissible pair. For a given vector of measurements
y and the nominal matrixC, we need to estimate the
set of all state vectorsx that are consistent with the
above data. According to Lemma 1

ky�Cxk2� ε2kxk2+δ 2; (33)

or equivalently

xT(CTC� ε2I)x�2xTCTy+yTy�δ 2

� 0: (34)

Assume that eigCTC 6= ε2, i.e.CTC�ε2I is invertible.
Then we can rewrite the last inequality in terms of a
quadratic form:

(x�d)TM(x�d)� 1; (35)

where

M =
R

yTCR�1CTy�yTy+δ 2 ;

d = R�1CTy; R=CTC� ε2I : (36)

The matricesR and M may not be positive or non-
negative definite. Therefore, the set of allx that satisfy
(35) is not necessarily an ellipsoid or a strip. It depends
on the values ofC andε. Nevertheless, an ellipsoidal
technique can be used to deal with the intersection of
this set with some non-degenerate ellipsoid.

The main result of this section can now be stated.

Theorem 2.If x belongs toE(c;P); P> 0 and satisfies
y = (C+H)x+w, whereH; w is an admissible pair,
thenx also belongs to the ellipsoidE(g;Q(τ)), with

Q(τ) = (1�ν)�1Qτ ;
Qτ = ((1� τ)P+ τM) ;

g = Q�1
τ ((1� τ)Pc+ τMd);

ν = (1� τ)cTPc+ τdTMd�gTQτg

(37)

for all τ such that 0� τ < τ� = minf1; 1=(1�λmin)g:
Hereλmin is the minimal generalized eigenvalue of the
matrix pair(M;P) (the generalized eigenvaluesλi and
eigenvectorsvi of the matrix pair(M;P) are defined as
Mvi = λiPvi).

One-dimensional functionsf1(τ) = trQ(τ)�1 and
f2(τ) = � lndetQ(τ) are smooth and convex on the
interval 0� τ < τ�. Optimizing E(g;Q(τ)) with re-
spect toτ with (24) or (25) gives the optimal ellipsoid
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Fig. 1. Attainability set
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Fig. 2. Intersection

in this parametrized family containing all admissible
points. However, in contrast with the solution for the
prediction step (Theorem 1) it can be a suboptimal
estimate in the class of all ellipsoids. It will be optimal
only if the centersc andd of the sets become equal; an
assumption that is not as natural as for the prediction
step.

To illustrate specific features of measurements with
an uncertain observation matrix, a scalar output, i.e.
m= 1, is considered. In this case an admissible vector
x (for fixedy) lies inside an hyperboloid inRn.

Example 2.Take m = 1, n = 2, y = 1, C = (1; 2),
ε = 1:5 andδ = 0:5. Assume a non-degenerate prior
ellipsoid E(c;P), with c = 0, P = diagf1; 1=9g. The
two eigenvalues ofRas defined by (36) have different
signs, so neitherR nor M is positive or non-negative
definite. We calculateλmin = mineig(M;P) =�2:953
and τ� = minf1; 1=(1� λmin)g = 0:253< 1. From
Theorem 2, the one-parametric family of ellipsoids
with matricesQ(τ) and centersg(τ) 2Rn contains the
intersection for allτ such that 0� τ < τ�. The minimal
ellipsoid of this family could be calculated in terms of

the trace or determinant criteria. Figure 2 shows the
resulting approximation (for the trace criterion).�

4. CONCLUSIONS

In the present paper, an outer-bounding ellipsoidal
technique for the estimation of the state of a linear
dynamic system under model uncertainty (7, 8) has
been proposed. As usual, two operations have been
considered, which are at the core of construction of
this state estimation. The first one is some general-
ized sum of ellipsoids and the second is an intersec-
tion. The combined quadratic constraints for uncer-
tain model matrix and disturbances lead to one-step
optimal estimates for systems with no measurements,
while the correction step based on similar principles
is suboptimal. We have addressed just one prediction
step and one correction step. However, using the above
techniques, it is trivial to develop recursive version
of state estimation for linear discrete-time dynamic
systems (1) with measurements (2) under uncertainties
of the form (7, 8).

It is of interest to extend the above results for more
general models of uncertainty, for instance, forwk re-
placed withBwk in (1), and more realistic constraints
than (7, 8).
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