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Abstract: Based on the Lyapunov stability theorem, an optimal model reference
adaptive control (OMRAC) scheme designed for a class of multi-input (MI) systems
with input non-linearity for solving robust tracking problems is presented in this
paper. The proposed control scheme contains an optimal controller designed for
nominal systems, and an adaptive mechanism used to automatically adapt the
unknown upper bound of perturbation. The asymptotical stability of tracking error is
guaranteed for the controlled system . A numerical example is given for demonstrating
the feasibility of the proposed control scheme.Copyright c° 2002 IFAC
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1. INTRODUCTION

Reference model has been widely used in the
design of control systems. Various adaptive con-
trol algorithms using reference model have been
developed for counteracting instability and im-
proving robustness with respect to unmodeled dy-
namics and external disturbances. Among these
algorithms are projection (Naik et al., 1992), per-
sistent excitation (Ioannou et al., 1989), sign-
following for the non-minimum phase systems
(Feng et al., 1996), as well as variable structure
model reference adaptive control (VS-MRAC)
(Hsu et al., 1989). All the aforementional works
only guarantee that the tracking error is bounded
and small on average in the presence of unmodeled
dynamics or bounded external disturbances. They
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do not guarantee that the tracking error either
can approach to zero asymptotically or is con¯ned
within a su±ciently small region whose size can be
tuned by control parameters.

It is also observed in practice that there do
exist nonlinearities in the control input due to
physical limitation, e.g., saturation, quantization,
backlash, deadzone, etc., and time-delay term
due to ¯nite speed of information processing and
mechanism of the plant. The e®ects of input
non-linearity and time-delay frequently become
a source of instability that cannot be ignored
during the design of a control system. As a result,
the control problem for systems with input non-
linearity and time-delay argument has received
considerable attentions by many authors in recent
years. Hsu (1997; 1998a; 1998b) has proposed
VSC schemes for uncertain dynamic systems with
series nonlinearities for solving regulation prob-
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lems. These control schemes can possess insensi-
tivity to matching uncertainties and disturbances.
However, the information of upper bound of un-
certainties is required. Sun et al: (1995; 1997)
presented a composite feedback control for a class
of uncertain nonlinear systems so that the prop-
erty of global exponential stability can always be
achieved. However, the information of the upper
bound of uncertainties is still required.

In this paper the idea of Hsu(1998a; 1998b),
Sue et al.(1997) is extended to design an OMRAC
law for a class of perturbed linear systems with in-
put non-linearity and time-delay argument so that
the tracking errors of state variables can have the
property of asymptotical stability and the adap-
tive gains can have pre-speci¯ed convergence rate.
The proposed control scheme contains two types
of controllers. One is a linear feedback optimal
controller, the other is an adaptive state feedback
controller, which will automatically adapt the gain
needed to overcome the perturbations, so that the
information of upper bound of perturbations is
not required.

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

Consider a class of perturbed multi-input lin-
ear dynamic systems with input nonlinearity. The
dynamic equation of the plant is described by

_x(t) = [A+¢A(t;x)]x(t) + ¢Ahx(t¡ h(t))
+[B+¢B(t;x)]Á(u)

+¢f(t;x(t);x(t¡ h(t))); (1)

x(t) = µ(t); ¡H ∙ t ∙ 0;
where x(t) 2 Rn is the state of the plant, u(t) 2
Rm is the control input. The constant matrices
A 2 Rn£n, B 2 Rn£m are known, whereas
¢A(¢), ¢Ah(¢), ¢B(¢) are unknown real-valued
matrix functions with appropriate dimensions rep-
resenting time-varying model uncertainties. Á(u),
the unknown input non-linearity, is a continuous
function, and ¢f(¢) is the uncertain extraneous
disturbance or nonlinearity of the plant. The pair
(A;B) is completely controllable, and h(t) is the
unknown delay with 0 ∙ h(t) ∙ H , where H is
also an unknown constant. The vector µ(t) is given
for specifying the initial condition. In addition, all
the states of the plant are assumed to be available
for measurement.

For achieving the design of model reference
control system, a reference model is given by

_xm(t) =Amxm(t) +Bmr(t) (2)

xm(0) = xm0;

where xm(t) 2 Rn is the state of the reference
model, r(t) 2 Rr is piecewise continuous and
bounded reference input. The constant matrices
Am 2 Rn£n, Bm 2 Rn£r are known, and Am is
stable matrix.

In this paper, the matrices AT , A¡1, and
¸(A) represent the matrix transpose, matrix in-
verse, and the eigenvalue ofA, respectively. kx(t)k
stands for the Euclidean norm of a vector, and in-
duced two-norm is used to compute a matrix norm
kAk. In order to design a model reference control
system successfully, the following assumptions are
also made:

A1. (Hsu, 1998a; 1998b; Sun et al., 1997) The
uncertain matrix functions ¢A, ¢Ah, ¢B,
and ¢f(¢) are continuous in x and piecewise
continuous in t, there also exist continuous
matrix functions ¢ ¹A, ¢ ¹Ah, ¹Bm, and ¹f (¢) of
appropriate dimensions such that the follow-
ing matching conditions are satis¯ed:

Am ¡A¡¢A = B¢¹A; ¢Ah = B¢¹Ah;

Bm = B ¹Bm; ¢B = B¢¹B; ¢f = B¢¹f

Remark: (Corless, 1993) The assumption of
matching condition will indeed restrict the
application of the proposed control scheme,
however, these matched uncertainties do ap-
pear frequently in many manipulator sys-
tems.

A2. (Hsu, 1998a; 1998b; Sun et al., 1997) The
unknown input non-linearity Á(¢) : Rm !
Rm is any continuous operator satisfying

°1u
Tu ∙ uTÁ(u); 8 u 2 Rm;

where °1 is a positive number.

The tracking error e(t) is de¯ned as

e(t) ´ xm(t)¡ x(t): (3)

From (1)-(3) and assumption A1, the dynamic
equation of tracking error can be derived as

_e(t) =Ame(t)¡BÁ(u)
+B[¢Ã(t;x(t);x(t¡ h(t)))]; (4)

where

¢Ã(¢)´¢¹Ax(t) + ¹Bmr(t)¡¢¹Ahx(t¡ h(t))
¡¢¹BÁ(u)¡¢¹f(t;x(t);x(t¡ h(t))) (5)

is the lumped perturbation of the system. Based
on the knowledge of the bound on the lumped
perturbation described in (5), the following as-
sumption is introduced:

A3. (Wheeler et al., 1998) There exists a function
w 2 Rp+1 and an unknown constant vector
k 2 Rp+1 such that for all x 2 Rn and all
t ¸ 0



k¢Ã(t;x(t);x(t¡ h(t)))k ∙ wTk;
(6)

where

w´ [1 kxk kxk2 ¢ ¢ ¢ kxkp]T ;
k´ [k0 k1 k2 ¢ ¢ ¢ kp]

T ; (7)

and ki; i = 0; 1; 2; ¢ ¢ ¢ ; p are unknown positive
constants.

The main objective of this paper is to design
an optimal model reference adaptive control law
based on Lyapunov stability theorem without the
requirement of the information of upper bound
of perturbation, the dynamic equation (4) will be
stabilized in spite of the existence of perturba-
tions.

3. OPTIMAL CONTROLLER DESIGN FOR
THE NOMINAL SYSTEMS

The case when there is no perturbation and
Á(u) = °1u for deriving an optimal control e®ort
for the dynamic equation (4) is considered ¯rst in
this section. The nominal dynamic equation of (4)
is represented as

_e(t) = Ame(t)¡ °1Bu: (8)

In order to derive an optimal control law for (8),
a performance index is considered as

J(e(t0);u(¢); t0)=
Z 1

t0

exp(2®t)(uTu+ eTQe)dt;
(9)

where Q is a positive de¯nite symmetric constant
matrix, and ® is a nonnegative constant. Note that
the pair [(Am + ®I);¡°1B] is completely stabi-
lizable. The problem now is to ¯nd an optimal
control law which can minimize the performance
index function (9). De¯ne

ê(t) ´ exp(®t)e(t); û(t) ´ exp(®t)u(t):
(10)

The performance index function (9) then can be
rewritten as

Ĵ(ê(t0); û(¢); t0) =
Z 1

t0

(ûT û+ êTQê)dt:
(11)

Suppose that u¤(t) is the optimal control at
time t which minimize (9). Then according to (10)
the optimal control at time t which minimize (11)
is û¤(t) = exp(®t)u¤(t), and the resultant value
of tracking error at time t is given by ê(t) =
exp(®t)e(t). Now the following lemma is utilized
to obtain the optimal control law for (11).

Lemma (Anderson et al., 1989): Suppose that
there exists a control law u(t) that stabilizes the
system

_x(t) = Fx(t) +Gu; x(t0) = x0

where the system is completely stabilizable. Then
the optimal control law is uniquely given by

u(t) = ¡R¡1GTPx(t);

which minimizes the following performance index

J(x(t0);u(¢); t0) =
Z 1

t0

(uTRu+ xTQx)dt;

where R and Q are positive de¯nite symmetric
constant matrices, and P > 0 is the unique
solution of the Riccati equation given by

PF+ FTP¡PGR¡1GTP+Q = 0: 2

(12)

Now di®erentiating (10) and using (8) yields

_̂e(t) = (Am + ®I)ê(t)¡ °1Bû: (13)

According to the previous Lemma, the optimal
control law of the system (13) is

û¤(t) = °1BTPê(t):

From (10) it is easy to see that the optimal control
u¤(t) of the system (8) is

u¤(t) = exp(¡®t)û¤(t) = °1BTPe(t); (14)

where the matrix P satis¯es the following Riccati
equation

P(Am+®I)+(A
T
m+®I)P¡°21PBBTP+Q = 0:

(15)

4. DESIGN OF ROBUST OMRAC SCHEME

Since the nominal system (8) is subject to the
perturbation ¢Ã(¢) as shown in (5), the results
of the previous section is utilized to design a
robust optimal adaptive controller to stabilize
the perturbed dynamic system (4). The controller
proposed for system (1) is designed as

u(t) = u1(e(t)) + u2(e(t)); (16)

where

u1(e(t)) = °1B
TPe(t); (17)

u2(e(t)) = °1¯1(t)B
TPe(t); (18)

¯1(t) =
1

°21

(wT k̂(t))2

(wT k̂(t))kBTPe(t)k+ " ; (19)

d

dt
k̂(t) =¡2½¡ k̂(t) + ¡wkBTPe(t)k; (20)

and k̂(t) ´ [k̂0(t) k̂1(t) ¢ ¢ ¢ k̂p(t)]
T 2 Rp+1

is the adaptive gain of the unknown vector k in
(7), " and ½ are any non-negative constants. Note
that the constant matrix ¡ 2 R(p+1)£(p+1) is a
symmetric and positive de¯nite matrix speci¯ed
by the designer.

It is obvious that the proposed controller (16)
consists of two parts. The ¯rst part u1(¢) is a linear



feedback optimal controller obtained from (14).
This part is used to stabilize the nominal system
(8). The second part u2(¢) is a bounded continu-
ous (non-linear) adaptive state feedback controller
which is used to overcome the perturbations in
order to increase the robustness of stability of the
controlled system. The following theorem shows
that the proposed control scheme can indeed guar-
antee the stability of the perturbed systems (1).

Theorem: Consider the perturbed dynamic equa-
tion (1) and the reference model (2) with afore-
mentioned Assumptions A1-A3. If the control ef-
fort u(t) is designed as in (16), then the dynamic
equation of tracking error (4) is (a) asymptotically
stable if ½ = " = 0 (b) uniformly ultimately
bounded if ½ 6= 0 and " 6= 0.
Proof: A Lyapunov function candidate is chosen
as

V (e; ~k) =
1

2
eTPe+

1

2
~k(t)T¡¡1~k(t);

(21)

where ~k(t) ´ k̂(t) ¡ k is the adaptation error.
Then, taking the derivative of V (¢) along the tra-
jectories of the tracking error's dynamic equation
(4), and noting that

d

dt
~k(t) = ¡2½¡ ~k(t) + ¡wkBTPe(t)k ¡ 2½¡k;

one can obtain

d

dt
V (e; ~k) =

1

2
eT (PAm +A

T
mP)e

+eTPB¢Ã(¢)¡ eTPBÁ(u)¡ 2½k~k(t)k2
+~kT (t)wkBTPe(t)k ¡ 2½~kT (t)k: (22)

From (16) to (18), and Assumption A2, it is noted
that

¡ eTPBÁ(u)
=¡(°1 + °1¯1)¡1(°1BTPe+ °1¯1BTPe)TÁ(u)
=¡(°1 + °1¯1)¡1uTÁ(u)
∙¡(°1 + °1¯1)¡1°1uTu
=¡°21eTPBBTPe¡ °21¯1kBTPek2: (23)

According to (6) and (23), (22) can further be
derived as

d

dt
V (e; ~k)

∙ 1
2
eT (PAm +A

T
mP)e+ kBTPekk¢Ã(¢)k

¡°21eTPBBTPe¡ °21¯1kBTPek2 ¡ 2½k~k(t)k2
+wT ~k(t)kBTPe(t)k+ 2½k~kT (t)kkkk

=
1

2
eT [P(Am + ®I) + (A

T
m + ®I)P

¡°21PBBTP+Q]e¡ ®eTPe¡
1

2
eTQe

¡1
2
°21e

TPBBTPe+ kBTPekk¢Ã(¢)k
¡°21¯1kBTPek2 ¡ 2½k~k(t)k2
+wT ~k(t)kBTPe(t)k+ 2½k~kT (t)kkkk

∙¡®eTPe+wTkkBTPek ¡ °21¯1kBTPek2
¡2½k~k(t)k2 +wT ~k(t)kBTPe(t)k
+2½k~kT (t)kkkk

=¡®eTPe+wT k̂(t)kBTPek
¡°21¯1kBTPek2 ¡ 2½k~k(t)k2
+2½k~kT (t)kkkk; 8 t ¸ 0: (24)

Since it is well known that

0 ∙ ab

a+ b
∙ b; 8 a; b > 0

Using (19) and previous inequality, one can obtain

wT k̂(t)kBTPek ¡ °21¯1kBTPek2

=
(wT k̂(t))kBTPek"
(wT k̂(t))kBTPek+ " ∙ ": (25)

On the other hand,

¡2½k~k(t)k2 + 2½k~k(t)kkkk
=¡½k~k(t)k2 ¡ ½(k~k(t)k ¡ kkk)2 + ½kkk2
∙¡½k~k(t)k2 + ½kkk2: (26)

Then, substituting (25) and (26) into (24) yields

d

dt
V (e; ~k) ∙ ¡®eTPe+ "¡ ½k~k(t)k2 + ½kkk2

=¡®eTPe¡ ½k~k(t)k2 + ~" ´ ¡Á(t); 8 t ¸ 0
where ~" ´ "+ ½kkk2. Á(t) = 0 is in fact an ellipse
(if two-dimensional plane is considered) on e¡k~kk
plane with center at origin. (a) If ½ = " = 0, then
V will decrease until e(t) = 0. This implies that
the dynamic equation (4) is asymptotically stable.
(b) If ½ 6= 0; " 6= 0, then _V (e; ~k) < 0 if the values
of e and k~kk are outside the region Á(t) = 0. Since
there exist functions Ã1; Ã2 2 K1 and Ã3 2 K,
e.g., Ã1 = V=2; Ã2 = 2V; Ã3 = Á(t), the signals e

and ~k(t) (and hence k̂(t)) are uniformly ultimately
bounded (Khalil, 1996). Noted that V (e; ~k) (and
hence e) has a convergence rate ® outside the
region Á(t) = 0 in the presence of the uncertain
¢Ã(¢). ¥
Note also that if ½ = 0, from (20) it is found

that the adaptive gain k̂(t) in general will slowly
increase boundedlessly if e(t) is not exactly equal
to zero in ¯nite time. It is also found that if " = 0,
the chattering phenomenon is enhanced, this can
be see from (18) and (19). Therefore, there is
a tradeo® among tracking accuracy, chattering
phenomenon, and adaptation performance.



5. SIMULATIONS

Consider a perturbed dynamic system with
input nonlinearity and time-delay argument as
described by (1) with

A =

0@¡1 1 0
0 ¡2 3
0 ¡4 ¡2

1A ; B =

0@0 01 1
0 1

1A
and the unknown model uncertainties, extraneous
disturbance, input non-linearity, and time delay
argument are assumed to be

¢A(t;x) =

0@0 0 0
0 0:2 0:4 cos(t)
0 0:1 sin(t) 0:3

1A
¢B(t;x) =

0@ 0 0
¡0:1 cos(2t) 0

0 ¡(0:2 + 0:1 sin(t))

1A
¢Ah(t;x)=

0@0 0 0
2 (1¡ 0:2 cos(t)) 0:1
2 0:2 ¡0:1 sin(0:5t)

1A
¢f =

0@ 0
cos(t)x3(t¡ h(t))
sin(t)x2(t¡ h(t))

1A
Á1(u) =

h
0:2 cos(u2) + e

(j cos(u1+u2)j)
i
u1

Á2(u) =
h
1 + 0:3 sin(u1 + u2) + 0:2e

(1+sin(u2))
i
u2

h(t) = 0:2 + 0:1 cos(t):

The reference model is given by0@ _xm1_xm2
_xm3

1A=
0@¡1 1 0
0 ¡2 3
0 ¡4 ¡2

1A0@xm1xm2
xm3

1A
+

0@0 01 1
0 1

1Aµr1(t)
r2(t)

¶
; 8 t 2 R

and the reference signal isµ
r1(t)
r2(t)

¶
=

µ
0:2 cos(2t)
0:4 sin(t)

¶
:

The objective of control is to use the proposed
control technique to design an optimal model ref-
erence adaptive controller such that the states
x1(t), x2(t) and x3(t) can track the desired ref-
erence signals xm1(t), xm2(t), and xm3(t) respec-
tively. The following is the design procedure of the
proposed control scheme.
1. Solve the Riccati Equation
The Riccati equation (15) is solved ¯rst with
°1 = 0:5, ® = 3, Q = I in order to obtain the
matrix P. By using the software MATLAB, one
obtain

P =

0@364:0746 29:8318 40:448129:8318 10:1308 2:1756
40:4481 2:1756 8:9009

1A :
2. Design of controller
According to (16) to (18), the control e®orts of
the proposed control scheme are

u1(t) = (0:5 + 0:5¯1(t))[14:916e1(t) + 5:0654e2(t)

+1:0878e3(t)]

u2(t) = (0:5 + 0:5¯1(t))[35:1399e1(t)+6:1532e2(t)

+5:5382e3(t)]

where ¯1(t) and k̂(t) is given by (19) and (20)

(k̂(0) = 0), respectively. The designed parameters
are set to (°1; ½; "; p) = (0:5; 0:01; 0:04; 2) and

¡ =

0@0:4 0 0
0 0:4 0
0 0 0:2

1A :
The results of simulation (with initial condi-

tion x(0) =
¡
0:5 ¡1 ¡0:5¢T are shown form Fig.

1 to Fig. 5. Fig. 1 shows all the tracking errors
e1, e2, and e3 are driven into a small bounded re-
gion respectively. Fig. 2 are the two control input
functions u1 and u2, there is no chattering at all.
The adaptation gain k̂ is shown in Fig. 3, which
are all bounded as expected. If (½; ") = (0; 0),
then there will be no tracking error theoretically
since _V < 0; 8t. However, from Fig. 4, one can
see clearly that the chattering phenomenon is
enhanced, and the adaptive gains k̂i; i = 1; 2; 3
all slowly increase boundlessly until the tracking
error is exactly equal to zero, as shown in Fig 5.

0 2 4 6 8 10

-0.5

0.0

0.5

1.0

1.5

e1

e2

e3

Tracking errors

Time(sec)

Fig. 1. Tracking error e.

6. CONCLUSIONS

In this paper an optimal model reference adap-
tive controller for a class of MI linear systems
with time-varying delay and input non-linearity
is successfully proposed for solving robust track-
ing problems. The proposed control scheme can
achieve asymptotical stability of tracking error,
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Fig. 2. Control input u.
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Fig. 3. Adaptive gain k̂.
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Fig. 4. Control input u with (½; ") = (0; 0).
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Fig. 5. Adaptive gain k̂ with (½; ") = (0; 0).

however, chattering phenomenon will arise and
the adaptive gains will slowly increase boundlessly
until all the tracking errors reach to zero. There-
fore, the designer has a tradeo® among tracking
accuracy, chattering phenomenon, and adaptation
performance.
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