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Abstract: In this paper, several types of iterative learning control (ILC) schemes for hard disk
drive (HDD) control, including previous cycle learning (PCL), current cycle learning (CCL)
and their combination, are designed and analyzed under the sampled-data environment.
The feedback loop of the CCL stabilizes the system in time domain while the PCL
guarantees the convergence along the iteration axis. Therefore, the combination of these two
schemes is applied and the effectiveness of the scheme is illustrated through simulations and
experiments.
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1. INTRODUCTION

Iterative Learning Control (ILC) was first introduced
and applied by Arimoto and his coworkers in 1984
(Arimoto and Miyazaki, 1984). More and more inten-
tion has been given to this new method and many ILC
algorithms have been proposed hitherto. In general,
ILC is a technique for improving the performance of
systems or processes that operate repetitively over a
fixed time interval. In practice, this defines a broad
class of systems to which the technique can be applied
(Moore, 1993).

Hard disk drives (HDDs), serve as an important data
storage medium for data processing systems, require
high precision control and complete rejection of dis-
turbances. Among plenty of research work in this area,
repeatable run-out (RRO) compensation attracts much
attention. Since RRO is a repeatable signal with finite
interval and it has consistent initial condition, RRO
compensation is actually under a repetitive control
environment. Therefore, ILC schemes are the best so-
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lution for such systems in practical because they could
achieve perfect tracking performance in the finite time
interval (Tae-Jeong Jang and Ahn, 1995), (S.M. Zhu
and Low, n.d.), (Jung-Ho Moon and Chung, 1996).
Due to the more and more common applications of
computer control, the ILC has been investigated in
discrete time for a long time (Kurek and Zaremba,
1993), (Saab, 1995b), (Bien and Xu, 1998). Most ILC
schemes can be classified into previous cycle learning
(PCL), current cycle learning (CCL) or their combina-
tions. The essential difference between PCL and CCL
is the introduction of feedback loop in CCL. The latter
becomes robust to the tracking error. However, CCL is
not suitable for learning with sampled delay and does
not guarantee the learning convergence. On the other
hand, PCL is a noncausal system. It can compensate
the sampled delay easily and therefore guarantee the
learning convergence. The PCL is open loop system
with no robustness. A combination scheme, namely
previous and current cycle learning (PCCL) scheme, is
therefore introduced. The PCCL guarantees the learn-
ing convergence while keep the system robust. In this
work, design and analysis of CCL, PCL and PCCL
will be conducted for HDD RRO compensation.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



The paper is organized as follows. In Section 2, for a
given HDD model, CCL and PCL schemes are dis-
cussed in sampled data systems. In Section 3, the
PCCL scheme is designed and analyzed based on the
system stability and learning convergence. To illus-
trate the effectiveness of the schemes, simulations and
experiments are conducted. Finally, the conclusion is
drawn in Section 4.

2. SAMPLED DATA ILC

2.1 Sampled HDD

A simplified HDD model is essentially a double in-
tegrator. Its open loop discrete time transfer function
is

�� � �
� �
�

�

� � �

�� � ���
(1)

where, � is the system gain of the HDD, �� is the
sampling period. The �-domain transfer function is
obtained by zero order hold (ZOH) method.

2.2 Sampled data CCL

It is known that the CCL scheme best fits the RRO
compensation problem for HDD in the continuous
time (Jian-Xin Xu and Zhang, 2001) for it can elim-
inate the RRO disturbance effectively with relative
degree 1. In sampled data systems, the convergence
condition of CCL is however different . Suppose that
the discrete updating law of CCL scheme at � � ���

iteration is

������� � ����� ���	������ � ��
������� (2)

where, in �-domain,
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When the sampling rate is high (say, �� � �������	��),
the system is approximately the same as in continuous
time and the CCL scheme still works properly at the
first several iterations, as shown in Fig. 1.
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Fig. 1. The first 3 iterations under CCL scheme

However, when learning carries on, the system sam-
pling delay will gradually degrade the learning per-
formance. As shown in Fig. 2, the controller signal
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Fig. 2. Initial errors in one iteration

obtain at ��� sample can only function at the period
between the ��� and � � ��� sample. Applying reset-
ting condition, 	��� � �, ���� � �, the controller
signal between the ��� and ��� sample is zero. At ���

sampled instant, the error is no longer zero (which is
		��� shown in Fig. 2, denoted as initial error). We
should note that this initial error 		��� is constant
since we assume the tracking error is periodic signal
and the learning is an iterative procedure. Therefore,
the updated controller signal will be summed up at
the ��� sampled instant and diverging to infinity along
the iteration axis. Since the CCL scheme is a causal
system, it could never make up this initial error caused
by sampling delay.

Suppose at ��� iteration, the initial error is 		����.
According to the updating law of CCL in (2),

����� � ������� ���	���� � ��
����
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��
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At the first iteration, there is nothing in the memory,
����� � �. Hence, the controller signal at the ���

sampled instant will go divergence because of the
integral action of the ILC law (3) along the iteration
axis whenever ��	
��� � ��

��� � constant �� �.
Fig. 3 shows the divergence of the CCL in sampling
time domain and Fig. 4 shows the controller signals
up to first 5 samples and first four iterations (which
are ��, ��, �� and �� in the figure). Note that the
divergence of controller signal at the ��� sampled
instant will influence the following several sampled
instants.

Considering the system control delay in a practice
system whereby in computing ����� only 	��� � �� is
available. The controller signal will go divergence due
to the same reason at the ��� sampling instant � � �
(shown as the dotted curve of � ����� in Fig. 2).

2.3 Sampled data PCL

To solve the sampled data delay problem, it needs a
non-causal compensation scheme. The PCL scheme is
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Fig. 3. CCL scheme in sampled data system
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Fig. 4. The controller signal at ��� 5 iterations

hence employed. It is well known that the discrete-
time PCL scheme can compensate for any relative
degrees (Xu, 1997), (Hwang and Oh, 1991). Since the
discrete-time HDD has relative degree one (from (1)),
the updating law of PCL in discrete system is

������� � ����� ���	��� � �� � 
��� � �� (4)

Note that the error information of one sample ahead
from previous iteration is used to update the controller
input signal. A drawback of PCL is its open loop
nature. When it is applied to the HDD system, which
is essentially a double integrator, the PCL could be
unstable within each iteration, i.e., diverges, in the
time domain. The simulation result of PCL is shown
in Fig. 5
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Fig. 5. PCL scheme in sampled data system

As the result shown, the PCL tends to diverge in each
iteration. This slows down the learning convergence
speed along the iteration axis.

3. SAMPLED DATA PCCL SCHEME

Since the CCL scheme constructs a causal system, it
could not eliminate the initial error caused by sampled
data delay in a discrete-time system. However, the

feedback loop in this scheme can stabilize the HDD
system in time domain. On the other hand, the PCL
scheme is a non-causal system, which means the data
at any sampling point from the previous iterations are
available. In this way, the initial error can be elim-
inated. From the properties of these two schemes, a
combination scheme, namely the previous and current
cycle learning (PCCL) scheme, is therefore introduced
in discrete time.

For a HDD system shown in (1), the design is con-
ducted in two steps. First, a proper PD controller is
chosen to stabilize the system. Then, the previous
information is used to improve the learning perfor-
mance. The formulation is shown as

������� � ����� ����� � ����� ����

����� ����� � ��� ����� � ��� �����

where, ������ indicates the PCL scheme portion
and ������� indicates the CCL scheme portion. The
block diagram of PCCL scheme is illustrated in Fig.
6. Note that for the computer control system to an
analogue HDD plant, zero-order-hold (ZOH) modules
are used as AD/DA converters. In the diagram, �� is
the sampling period and �� is the learning iteration
period.
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Fig. 6. Block diagram illustration of PCCL scheme

3.1 Closed-loop design in time domain

First, we need to prove this new scheme is stable
with the additional PD control feedback loop. For the
convenience in the analysis, we transfer the approx-
imated differential expression in �-domain, � �

��� , to

�-domain, �����	
�������

, by ZOH method, where, � is
a constant factor chosen as 100 and �� is the sam-
pling period. Therefore, we have the close-loop trans-
fer function of the HDD plant with a PD controller
feedback, in �-domain, which is
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where, � ��� and ���� are the output and input of the
HDD plant with the PD feedback, respectively. � is
the gain of HDD, ���� and ���� are the proportional
and derivative gain of PD controller, respectively. The
characteristic function of (5) is
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Substituting the actual parameters � � ������ ��
,
� � ��� and �� � ����� into the characteristic
function (6) yields

�� � ����������� � ������������� ���������

�������������� ��������

������������ � ������������ � ������� � �

The values of ���� and ���� can be adjusted to guar-
antee the stability of the system, i.e., all the roots of
characteristic function (6) are in the unit circle. The
following figures (Fig. 7 - 9) show the absolute values
of three roots ����, ���� and ���� w.r.t. ���� and ����.
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Fig. 7. ���� of the characteristic function
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Fig. 8. ���� of the characteristic function

The figures show that there is a feasible region for
���� and ���� to ensure the absolute values of all three
roots of � strictly less than 1 simultaneously (i.e., all
the poles of (6) are within unit circle).
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Fig. 9. ���� of the characteristic function

3.2 Learning design in iteration domain

The next step in PCCL design is to show the PCL part
is convergent along the iteration axis.

The transfer function of the HDD plant shown in (1)
has a relative degree of 1. Considering there is one
system control delay in the system, the updating law
of the PCL should be

������� � ����� � ��	��� � ��� (7)

where,

�� � ���� � ����
��� � ��

� � 	��	�

is the �-domain PD-controller transfer function of
PCL. Referring to Fig. 2, at � � � and ����� iteration,
	������ � �	������ � � by resetting condition. The
controller signal is

������� � ����� � ��	�����

Note that now in computing control signal at � � �,
we use the error signal at � � �. This plays a role
as one step prediction advanced in iteration domain
such that the one step system sampling delay can be
compensated.

Let us now verify the convergence condition of the
PCL scheme. Define the CCL close-loop transfer
function as �� and the PCL scheme transfer function
as ��. Thus, in sampled data system,

�� � ����

������ � �� � ���������
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According to the updating law of PCL,

������� � ����� � ��	��� � ��

� Æ������� � Æ������ ��	��� � �� (9)

Applying �-transform to (8) and (9) and assuming
the zero initial conditions, we have the following
equations in frequency domain

Æ������� � Æ������ ��� 	����

� Æ������ �����Æ�����

� ��� ������Æ����� (10)



The PCCL scheme converges if all the magnitude of
eigenvalues of � � ����������� are less than 1. In
this case, �� � ������������ � � � � can ensure
the convergency of the scheme, where, � is a positive
real number strictly less than 1. Once ���� and ����
are chosen to make the PCCL stable in time domain,
���� and ���� can be tuned accordingly so that the
learning control system converges (Refer to the sec-
tion Appendix for the detail calculations of choosing
���� and ����).
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Fig. 10 shows the convergence region when choosing
���� � ���� and ���� � ���� and � � ���. Note
that the system will converge when ���� and ���� are
chosen below this region.
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Fig. 11. PCCL scheme for RRO fundamental harmon-
ics compensation

The simulation for RRO fundamental harmonics com-
pensation is shown in Fig. 11. The frequency of the
RRO fundamental harmonics �� � �� Hz. In the
simulation ���� � ���� � ��� � ���� and ���� �
���� � ��� � ����. The PCCL scheme is shown
stable and convergence for these values chosen. The
system converges in iteration domain and meanwhile
improves performance in the time domain as well.

3.3 Experiments

The experiment set contains a Maxtor hard disk pro-
totype (Model 51536U3), a Laser Doppler Vibrome-
ter (LDV) and a TMS320 Digitial Signal Processor
(DSP). In the experiment, the computer generated con-
trol signals and disturbance signals (RRO) are sent to
the VCM in the HDD head positioning circuit by the
DSP. The R/W head is driven by the motor and the

head positioning signals are measured by LDV and
sent back to the computer through DSP. In the experi-
ment, we use computer generated RRO rather than the
RRO in a real HDD in order to simplify the system
disturbance, so that we can focus on the RRO elimina-
tion and consider either single or multiple harmonics.
Due to the environment noise, the experimental results
were analyzed in frequency domain.

Fig. 12 shows the Fast Fourier Transform (FFT) of
a single RRO harmonics at 60 Hz. The amplitude of
RRO is about 0.3 tracks. Fig. 13 shows the system
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Fig. 12. RRO disturbance at 60 Hz

0 50 100 150 200 250 300 350 400 450 500
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency, Hz

Lo
g1

0 s
cal

e

Fig. 13. After 2nd iteration learning

output in frequency domain after 2 iterations learning.
The RRO harmonics shown in Fig. 13 was reduced to
1/30 of its original amplitude.

4. CONCLUSION

Stability and learning convergence are two most con-
cerned problems when applying iterative learning con-
trol (ILC) schemes to HDD RRO compensations. In
this paper, several types of ILC schemes have been an-
alyzed. It is observed that the feedback loop of current
cycle learning (CCL) scheme stabilizes the HDD sys-
tem. The previous cycle learning (PCL) scheme can
guarantee the convergence condition for RRO com-
pensations. Therefore, a combination scheme, previ-
ous and current cycle learning (PCCL) scheme, has
been employed. Its stability and convergency proper-
ties are verified through both the theoretical analysis
and experiments.

5. APPENDIX

According to (10), define
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Substituting values of � , �� and �, we have
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Applying the convergence condition,
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