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Abstract: Non-stationary time series are commonly found in �nancial applications.
Added to the complexity are the time-varying nature and non-linearity of accurate
models for describing the dynamic behavior of these �nancial time series. We
extend the techniques of cointegration to handle time-varying, non-linear relationship
betw een a time series (\news") and its causally a�ected time series. The predictability
of daily return, as related to the NASDA Q indexes and to a possible NASDAQ-GEM
relationship, is investigated based on a proposed \news" model for dynamic changes.
The e�ectiveness and robustness of neural netw ork models for handling non-linearity
is compared with linear least-squares estimation.
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1. INTRODUCTION

Recently there has been muc h in terest in non-
linear modeling (Campbell et al., 1996), espe-
cially in using neural netw ork tec hniques (Refenes
et al., 1996), for �nancial applications that are
broadly encountered across div erse discipline of
�nance, econometrics, and engineering. Practical
problems abound for more e�ective use of intel-
ligen t system technology, giv en the tremendous
gro wth of Internet-based �nancial information for
investment decision by both individual and in-
stitutional users. This paper considers some im-
portant issues related with the use of economet-
rics (Campbell et al., 1996; Enders, 1995) and sys-
tem identi�cation techniques (Ljung, 1999), neu-
ral net w orks (Haykin, 1994; White, 1989; Anders
et al., 1998) for predicting equity return. Two em-
pirical studies are performed on the relevance of
these issues on the NASDA Q indexes, and on the
causal e�ect of NASDA Q on a smaller new market
called the Growth Enterprise Market (GEM).

Research on coin tegration (Enders, 1995; En-
ders, 1996) is rather extensive in the econometrics

literature, mostly related with statistical signi�-
cance testing using the Engle & Granger proce-
dure (Engle and Granger, 1987) and Johansen
methodology (Johansen, 1988). Nonlinear coin-
tegration has also been studied by Burgess &
Refenes (Burgess and Refenes, 1996), in particular
the use of neural netw ork for "conditional cointe-
gration". In Section 2 we focus mainly on a simple
tw o time-series case to clarify the important role
of error correction, and consider various model
extensions to deal with nonlinearity, current and
expected "news", and equity return prediction.

Section 3 describes our �rst empirical study on the
NASDA Q indexes. As the NASDA Qcomposite
index must be related with the other NASDAQ in-
dexes to di�erent extent, regression analysis is rel-
evan t in classifying any possible linear equilibrium
relationship. The e�ectiveness of using linear and
nonlinear models, including neural netw ork, for
predicting equity and its daily return is described.
P articular emphasis is paid on the reduction of
error v ariance and the relative sensitivity betw een
in-sample and out-of-sample data. The Growth
Enterprise Market (GEM) is a recently introduced
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second board of the Stock Exchange of Hong
Kong. It is widely believed that the NASDAQ
index has been one of the major \news" a�ecting
the GEM stock prices and the Growth Enterprise
Index (GEI). In Section 4, an empirical study is
performed on testing a possible NASDAQ-GEM
relationship for equity return prediction.

2. COINTEGRATION MODELING:
LINEARITY AND NONLINEARITY

The concept of cointegration, as thoroughly dis-
cussed in (Enders, 1995), applies to many eco-
nomic and �nancial time series, where a lin-
ear equilibrium relationship exists among non-
stationary variables. For the simple case of two
time series, yt and pt, the long-run relationship
can be expressed simply as

yt = �0 + �1pt + et (1)

where et is a zero-mean normal innovation pro-
cess. The signi�cant contribution of Engle &
Granger (Engle and Granger, 1987), in deriving an
equivalent error correction formulation (Granger
representation theorem), avoids the misspeci�ca-
tion error when regression analysis is performed
on the di�erences of the non-stationary variables.
The error correction term (the residual estimate
at t�1 is êt�1 = yt�1��0��1pt�1) contributes to
the regression analysis of the di�erence equation

�yt = �1 + �y êt�1 +

mX

i=1

�11(i)�yt�i

+
nX

i=1

�12(i)�pt�i + �yt (2)

where �yt is a white-noise disturbance, � is the
backward shift operator (= 1 � z�1), and �'s
are constants to be determined. There are several
limitations on using linear regression analysis for
cointegration. Firstly, the possibility of a nonlin-
ear long-run relationship f(:) should be addressed,
i.e.,

yt = f(pt) + et (3)

where the residual estimate êt�1 at t� 1 becomes
yt�1 � f(pt�1).

Secondly, a more general nonlinear di�erence
equation model can be used instead of Eqn. (2):

�yt = g1(�yt�1; : : : ;�yt�m; êt�1;

�pt�1; : : : ;�pt�n) (4)

Thirdly, the correction term in Eqn. 2 has not
taken account of the possible causal e�ect of pt

on yt at time t. In addition, the availability of
the future expectation of pt (denoted by p̂t+1)
can contribute to a more precise determination of
�yt. We can classify both pt and p̂t+1 as \news"
items, and consider the following as a special case
of \news" modeling:

news(t) =�pt (5)

news(t+ 1) =�p̂t+1 (6)

Thus, \news" modeling of pt can be incorporated
into Eqn. (2), as

�yt = �1 + �y êt�1 +

mX

i=1

�11(i)�yt�i

+

nX

i=1

�12(i)�pt�i + 1news(t+ 1)

+2news(t) + �yt (7)

Eqn. (7) can also be adjusted to handle nonlinear-
ity:

�yt = g2(�yt�1; : : : ;�yt�m; êt�1;�pt�1; : : : ;�pt�n;

news(t+ 1); news(t)) (8)

By drawing parity with Eqns. (7)-(8) we can study
the predictability of the daily return rt of the
underlying equity by considering the modeling of
� log(yt) = rt and � log(pt) = st, either linearly
as

rt =�log(yt)

= �01 + �0y êt�1 +
mX

i=1

�011(i)rt�i +
nX

i=1

�012(i)st�i +

01news
0(t+ 1) + 02news

0(t) + �0rt (9)

or nonlinearly as,

rt = g3(rt�1; : : : ; rt�m; êt�1; st�1; : : : ; st�n;

news0(t+ 1); news0(t)) (10)

where news0(t) = st and news0(t + 1) = ŝt+1.
Eqn. (9)-(10) form the basis for predicting equity
return in subsequent sections.

3. DYNAMIC MODELING OF NASDAQ
COMPOSITE INDEX

A study was performed on two years of daily NAS-
DAQ market indexes, including Composite, 100,
Financial-100, Computer, Industrial, Telecommu-
nication, and Biotech. For each index, this cor-
responds to a data �le of 482 matching values



from June 15, 1988 to June 12, 2000 by elim-
inating inconsistent records. The �rst half (241
records) is used for in-sample learning, while
the latter half is used for out-of-sample testing.
The six market indexes are ranked by normal-
ized correlation, which is obtained by performing
a linear regression on normalized data of zero-
mean and unit variance. A high correlation close
to 1 indicates that the Composite index/ Com-
puter index has a long-run linear equilibrium re-
lationship (Eqn. (1)). The correlation ranking is
found as follows: (Composite/Computer: 0.9969),
(Composite/100: 0.995), (Composite/Industrial:
0.9920), (Composite/ Telecom: 0.9874), (Compos-
ite/ Biotech: 0.9631), (Composite/ Financial-100:
-0.5697). It is thus observed that the long-run
equilibrium relationship between the Composite
index and Financial-100 index is far from being
linear.

3.1 Linear model for rt

For each NASDAQ composite/ component index
pair, we measure the signi�cance of using that
component index (pt) for predicting the Com-
posite index (yt), and the sensitivity between in-
sample and out-of-sample performance. All mod-
eling is based on Eqn. (9) using a single Ada-
line neuron (Widrow and Sterns, 1985; Demuth
and Beale, 1998) for batch least-squares estima-
tion (Ljung, 1999). For simplicity, �01, �0y, �012,
and 01 are taken as zero, m = 3, and Eqn. (9)
then reduces to

rt =

3X

i=1

�011(i)rt�i + 02news
0(t) + �0rt (11)

Based on the predicted value of the daily return
(r̂t) from Eqn. (11), the predicted composite index
can also be readily obtained

ŷt = yt�1 exp(r̂t) (12)

The error variances for both the predicted com-
posite index and its daily return are tabulated
with regard to the presence or absence of news0(t)
in the model. In general, we observe that the use
of component index information, news0(t) at time
t, contributes positively to the reduction of the
prediction error variance of the composite index
and its daily return. The reduction is rather sig-
ni�cant when there is a high correlation between
the composite index and the component index.
As measured by the percentage of improvement
(= reduction of error variance due to news0(t) /
error variance without using news0(t)), it ranges
from less than 8% for the case of Financial-100
to greater than 96% for NASDAQ-100. For the

best case of NASDAQ-100, its use for out-of-
sample testing can yield a low prediction error
for the NASDAQ composite (roughly 1 standard
deviation = 16.88 which is less than 1% of the
NASDAQ composite index value).

As expected, the out-of-sample error variance is
higher than that obtained from in-sample learn-
ing using the single-neuron Adaline model (batch
least squares) for most cases. However, the sensi-
tivity is within an acceptable range (1 to 5 for yt
and around 1 for rt). There is an indication that
this out-of-sample sensitivity for rt is less than
that for yt. The use of news0(t) appears to con-
tribute slightly on the reduction of this sensitivity.
Other alternatives for Eqn. (9) have also been
investigated, such as the use of êt�1, news

0(t +
1), and st�i. There are no marked di�erences in
the prediction error variances by including these
terms if news0(t) has already been included. This
indicates the signi�cant role of news0(t) on the
improvement of predictability of rt and yt, appar-
ently due to the availability of information of pt
up to time t.

3.2 Nonlinear model for rt

For a closer look on the details of dynamic
changes, a smaller sample of the NASDAQ data
was selected in a comparative study on using
linear and nonlinear models. The �rst 51 data
records out of a total of 124 are used for in-sample
learning, with the remaining being tested for out-
of-sample performance. NASDAQ-100 is chosen as
the news(t) that can be used for predicting the
NASDAQ composite index (yt) and its daily re-
turn (rt). We consider mainly two types of neural
network for nonlinear modeling: backpropagation
network and radial basis function network. For a
comparative evaluation with the linear model of
Eqn. (11), the nonlinear model assumes a reduced
structure from Eqn. (10):

rt = g3(rt�1; rt�2; rt�3; news
0(t)) (13)

The same Adaline neuron (batch least squares) (Demuth
and Beale, 1998) discussed in the previous subsec-
tion provides a reference linear model benchmark.
The linear model (using news(t)) gives good pre-
diction of rt and yt for in-sample data fairly well,
but its dynamic performance noticeably deterio-
rates for out-of-sample data. The results observed
previously, most notably the e�ect of news(t) on
the reduction of error variance, are again demon-
strated.

(a) Backpropagation network (Hagan et al., 1996;
Haykin, 1994; Demuth and Beale, 1998)

The backpropagation network is using a conven-
tional feedforward multilayer architecture with



local gradient-descent optimization procedure. It
has been found that the use of standard function
(\new�") and default parameter values in MAT-
LAB's Neural Network (NN) toolbox (Demuth
and Beale, 1998) is quite adequate for our pur-
pose. In this particular case, we choose a 4-input
(frt�1; rt�2; rt�3; news

0(t)g), 3-layer S = [5; 3; 1]
structure with single output (rt). The converged
model after 500 epochs is used. Other choices
for S and initial parameter setting have been
attempted but give largely similar results. The
backpropagation-trained nonlinear model gives
a signi�cant in-sample improvement over linear
model, though at the expense of a worsened out-
of-sample performance. Hence, the sensitivity of
this nonlinear model is substantially higher. In
regard to the e�ect of news(t) on error variance
reduction, the percentage of improvement for the
nonlinear model case is signi�cant (92% versus
96% for the linear model case).

(b) Radial basis function network (Demuth and
Beale, 1998; Hutchinson et al., 1994)

Another neural network model based on radial ba-
sis funtion is also used for nonlinear modeling. The
MATLAB's NN standard function (\newrbe") is
adequate for our testing. Di�erent spreads (as
speci�ed in newrbe(P; T; spread)) for the Gaus-
sian point function have been tried to obtain
di�erent degree of model \�tness" to the data.
As compared with the backpropagation network,
there is an extremely high sensitivity of radial-
basis-function network for out-of-sample data. De-
spite the near-perfect match for in-sample predic-
tion, the out-of-sample performance is not promis-
ing.

4. TIME-VARYING NASDAQ-GEM
RELATIONSHIP

The Growth Enterprise Market (GEM) in Hong
Kong started trading on November 25, 1999.
Given the market size disparity, it is apparent that
a \one-way" causal relationship exists between
NASDAQ and GEM. However, this relationship
is observed to be non-trivial, indicating that a
simple functional representation is not adequate.
Unlike the case for NASDAQ indexes as discussed
in the previous section, the NASDAQ-GEM rela-
tionship is more diÆcult to establish. However, it
is a more practical case concerning the inuence
of NASDAQ on GEM as "news". This is in con-
trast with deriving relationships among NASDAQ
indexes only, as these indexes should be known
at the same time and hence one index could not
"practically" a�ect another index as "news". Hav-
ing said so, our study described in the previous
section is useful for quantifying the role of the

\arti�cial" news0(t), in regard to the use of linear
and nonlinear modeling for return prediction.

It is important to treat the NASDAQ-GEM re-
lationship as a time-varying one, because the
\news" e�ect of NASDAQ on GEM can come
as future expectation or speculation, immediate
reaction, or delayed response at di�erent period
of time. In additon, the magnitude of the e�ect
may also be time varying. We consider 68 data
samples of the NASDAQ composite index and
Hong Kong's Growth Enterprise Index (GEI) be-
tween March 17, 2000 (the �rst date when GEI
data is available) and June 30, 2000. A careful
dichotomy of the similarities between the two
normalized indexes gives more details on the time-
varying nature of the relationship. The correlation
between NASDAQ and GEI over the whole period
is 0.8192. For the �rst half of the data samples,
the correlation is much higher (0.935) than that
for the second half (-0.18). For accurate modeling,
some types of time-varying model that can follow
the changes would be needed. Ideas of using mul-
tiple models with appropriate switching, and re-
cursive estimation procedures have been explored;
but preliminary results are not very supportive
for signi�cant improvemnet over more simpler
models. This may be attributed to the lack of a
priori information and the unknown nature of the
changes, especially when the changes occur over
fairly short time scale that makes it very diÆcult
for any adaptive scheme to follow accurately.

In the follwing we only consider a simple single-
model approach with batch-mode learning. How-
ever, additional terms for the future expectation,
immediate reaction, and delayed respnse to news
are included to handle possible time variation.
The robustness of the model to out-of-sample data
will be discussed.

4.1 Linear model for the NASDAQ-GEM relationship

While accepting the complexity of the time-
varying and non-linear nature of the relationship,
we �rst look at the advantages and limitation of
using the following linear model for in-sample rep-
resentation and out-of-sample prediction of GEI.

rt =

3X

i=1

�011(i)rt�i + �012(i)st�1 +

01news
0(t+ 1) + 02news

0(t) + �0rt (14)

where rt is the daily return of GEI at t, news
0(t+

1) = st+1 is the future expectation of the
NASDAQ-composite return at t+ 1. The current
and delayed e�ect of NASDAQ are represented
by news0(t) = st and news0(t� 1) = st�1. respec-
tively.



(a) Without using NASDAQ information

By neglecting st�1, news
0(t + 1), and news0(t),

Eqn. (14) reduces to an Autoregressive (AR)
model (Ljung, 1999) which is quite e�ective to
capture the dynamics of GEI without taking ad-
vantage of any available information on NASDAQ.
We used a third-order AR model in our evalua-
tion. The model is learned using the batch mode
(equivalent to the batch least squares) of an ADA-
LINE neuron based on the GEI in-samples from 1
to 48. Prediction accuracy is evaluated based on
the out-of-sample data from 49 to 68. The esti-
mated model shows an interesting characteristic
of using AR model: the predicted value of yt is
somewhat delayed when compared with the actual
value. In fact, this should be expected from an AR
model which is using information only up to t� 1
for predicting into time t.

As observed in the GEI daily return rt, the esti-
mated AR model appears to be ine�ective in cap-
turing the changes in the actual return for both
in-samples and out-of-samples. In comparing with
in-samples, out-of-sample error variance is better
despite the model inaccuracy. This is mainly at-
tributed to the less turbulent stock changes for
the chosen out-of-samples in this particular case.
However, it also indicates the robustness of lin-
ear least-squares estimation for making e�ective
prediction over a broad range of data samples.

(b) Using NASDAQ information

The NASDAQ information or \news" is incorpo-
rated into the AR model as exogenous input. The
input can either be based on future expectation
(as news0(t+1)), current information up to time t
(as news0(t)), time-lagged response or delayed in-
formation up to time t�1 (as news0(t�1) = st�1),
for a better prediction on the GEI, yt, at time t.
It is assumed that news0(t) can causally a�ect yt
(i.e., the news of the NASDAQ composite index
in a trading day in U.S. will a�ect the GEI in
the following trading day in Hong Kong due to
the time di�erence which allows the spread of
"news").

Apparently, it is observed that the predicted val-
ues of yt are not \delayed" when compared with
the actual values. The predictability of the GEI
daily return is substantially improved. The inclu-
sion of NASDAQ information as exogenous input
can improve the performance by reducing the
error variance on GEI. It is especially so when
timely NASDAQ information on the most recent
day (as news0(t)) preceding the GEM trading is
available. The advantage of including news0(t) is
noted for error variance reduction (roughly 20%
versus 10% when using news0(t � 1) only. We
observe that the inclusion of future expectation

news0(t + 1) is not very signi�cant in reducing
error variance.

It is useful to make a comparative evaluation
between empirical results on NASDAQ indexes
(in section 3) and on NASDAQ-GEM. For both
studies, the positive e�ect of news0(t) in improv-
ing predictability of the daily return rt and actual
index yt (by reducing error variance) is estab-
lished. However, the e�ect is comparatively less
signi�cant for NASDAQ-GEM with around 20%
improvement (versus close to 96% for NASDAQ
indexes). This may be attributed to several fac-
tors, such as the relatively low correlation (0.8192
versus 0.9969) and the time-varying nature of
the NASDAQ-GEM relationship. These factors
further indicate a nonlinear long-run equilibrium
(Eqn. (3)) between the GEI and NASDAQ, com-
pared with a fairly linear relationship (Eqn. (1))
among most of the NASDAQ indexes.

4.2 Nonlinear model for the NASDAQ-GEM relationship

We consider the possible improvement using non-
linear models for representation and prediction.
While the previous study indicates that linear
model based on least squares learning can give
reasonable in-sample performance, there is much
ground for reducing the error variance if more
accurate modeling is applied. A restricted form of
the nonlinear model given by Eqn. (10) has been
considered:

rt = g3(rt�1; rt�2; rt�3; st�1;

news0(t+ 1); news0(t)) (15)

(a) Back-propagation (BP) neural network

Compared with the use of linear model, a much
better in-sample performance in error variance
reduction (around 89%) is obtained. However,
the out-of-sample behavior is substantially worser
than that of linear model, indicating that the non-
linear model is very sensitive to modeling error.
The overall error variance in using nonlinear back-
propagation NN model is higher than that of the
linear model despite its more accurate in-sample
representation.This agrees well with our previous
observation (in section 3) on using nonlinear mod-
eling based on BP for NASDAQ indexes. The sen-
sitivity of the nonlinear model is more pronounced
here, as the linear model gives a better behavior
due to the less turbulent nature of the out-of-
sample data.

While the positive e�ect of using news0(t) is less
drastic for linear model, it is not the case for
using nonlinear BP network. As given in Table
4(b), the percentage improvement in reducing in-
sample error variance for rt and yt is around



87%. This is quite a signi�cant improvement and
compares favourably with the 91% as reported
for the case of NASDAQ indexes. Despite this in-
sample improvement, there is little gain in using
news0(t) to reduce out-of-sample sensitivity.

(b) Radial-basis-function (RBF) network

It is readily seen that the nonlinear RBF net-
work's behavior is similar to that of the BP, with
close to 87% improvement in error variance reduc-
tion over the linear model. Again, the nonlinear
NN gives very good in-sample performance but
bad out-of-sample prediction. The high sensitivity
of the nonlinear NN to modeling error is clearly
demonstrated. The positive e�ect of news0(t) in
nonlinear modeling is con�rmed with the RBF
network. The results are in close resembance with
that of the NASDAQ indexes, where near-perfect
in-sample match can easily be attained with the
RBF. An almost 100% improvement in error vari-
ance by using news0(t) serves little to reduce the
out-of-sample sensitivity of the RBF network.

5. CONCLUSION

Two di�erent approaches have been proposed for
studying the predictability of equity return using
linear and nonlinear modeling. We extend the
techniques of cointegration time series to deal
with both linear and nonlinear models, includ-
ing long-run equilibrium, correlation of \news"
e�ect, and time-varying model changes. Two ref-
erence practical cases are discussed in detail: one
is related with the largely linear relationships
among the NASDAQ indexes, and the other is
related with the modeling of a more diÆcult
time-varying NASDAQ-GEM relationship. Linear
least-squares estimation has been found to give
good in-sample performance, and is robust in
dealing with model inaccuracy for out-of-sample
tests. Nonlinear models using neural network tech-
niques, in particular the back-propagation and
radial basis function networks, are found to give
much improved in-sample performance over linear
models, but at the expense of high sensitivity
towards model inaccuracy for out-of-sample tests.
Through the use of proper linear and nonlinear
modeling, more accurate prediction of equity re-
turn and the actual price can be obtained by
e�ective incorporation of timely \news" e�ects.
Extensive empirical results are provided for the
two pracitical cases.
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