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Abstract: By exploring the geometry of the underlying constrained optimization, a
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1. INTRODUCTION

On-off and relay feedback control systems are
widespread and have been studied extensively,
see e.g. (Bockman, 1991; Gonçalves et al., 2001).
An interesting generalization corresponds to the
finite control set case analyzed by Chitour and
Piccoli (2001). Here, the constraint set is allowed
to contain any finite number of elements. This sit-
uation arises in many practical contexts, e.g. when
a finite number of control levels are available.
The same problem arises when considering digi-
tal control systems affected by quantization and
saturation (Sznaier and Sideris, 1994; Feng and
Loparo, 1997). In addition, finite alphabet con-
trol laws form a precursor to hybrid systems as
studied e.g. in (Branicky, 1998; Bemporad and
Morari, 1999). They also have close links to the
issue of control with communication constraints
(Liu and Wong, 1997) and predictive analog to
digital data converters such as the Σ∆–Modulator
described in (Norsworthy et al., 1997).

In this contribution, the discrete time receding
horizon quadratic control problem with a finite al-
phabet is studied. The approach is in the spirit of

recent results on Model Predictive Control, which
are aimed at providing insight into the nature of
the control law via an elucidation of the inherent
structure of the mapping between plant states
and optimal controls. In particular, for the case
of `1 constraints (e.g. saturation) one obtains a
characterization in terms of a partition of the state
space into polytopal regions in which the control
input is piece-wise affine in the state (Seron et
al., 2000; Bemporad et al., 2002; Johansen et
al., 2000). The present work is also related to the
work of Beck and Teboulle (2000), where relations
between optimizers of quadratic programmes with
`1 and with binary constraints are explored.

The key-result obtained here is to show that a sim-
ilar structure holds for the case of control with a
finite constraint set. Moreover, there exists a close
connection between the partitions induced by the
finite alphabet–, and the `1–constrained solution.
Advantages accruing from the explicit description
of the solution, as detailed here, include:

• giving a complete characterization of the
control policy, which enhances verifiability
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of the complete range of behavior without
relying on on-line optimization,

• providing a structure which opens the door
to alternative tools for study the dynamic
behavior of the closed loop system, including
issues such as stability.

The outline of the paper is as follows. The general
problem is formulated in the next section. The
unconstrained solution is reviewed in Section 3. In
Sections 4 and 5 the finite set constrained solution
is characterized. Relations to the `1–constrained
case are examined in Section 6. Section 7 contains
an example and Section 8 draws some conclusions.

2. GENERAL PROBLEM FORMULATION

Consider a system with scalar input u(k) and
state vector x(k) ∈ R

n described by:

x(k + 1) = Ax(k) + Bu(k), u(k) ∈ U, (1)

where U is a set representing input constraints.

The finite horizon (open loop) quadratic regulator
problem at time t = k consists of obtaining the
optimizing sequence of present and future control
inputs

u?(x(k)) = arg min
u(k)∈UN

{VN(x(k), u(k))} , (2)

where:

u(k) =




u(k)
u(k + 1)

...
u(k + N − 1)


 , U

N 4
= U × · · · × U (3)

and VN is the finite horizon quadratic cost func-
tional

VN(x(k), u(k)) = xT (k + N)Px(k + N)

+

k+N−1∑
t=k

{xT (t)Qx(t) + uT (t)Ru(t)}, (4)

with Q = QT ≥ 0, P = PT > 0 and R > 0.

The optimization provides the optimal sequence,
which is a function of the current state x(k) and
is denoted as u?(x(k)). The solution therefore
corresponds to an open loop control law. A closed
loop law is usually obtained by implementing
u?(x(k)) in a receding horizon manner, i.e. by
applying only the first control action

u?(x(k)) =
[
1 0 · · · 0

]
u?(x(k))

and repeating the optimization at the next time
instant with a new initial state and the finite
horizon shifted by one, see e.g. the review by
Mayne et al. (2000).

In this paper, the main interest resides in the case
where U is a finite set so that the optimization
problem (2) is non-convex due to the fact that the

constraint set is non-convex. In order to derive the
solution to this problem, it is useful to first briefly
review the unconstrained solution.

3. UNCONSTRAINED SOLUTION

The optimizer to the Linear Quadratic Regulator
problem without constraints, i.e. where U = R,
is well known and can be obtained by using
dynamic programming. It involves the solution
of a Riccati Equation, see e.g. (Kwakernaak and
Sivan, 1972). This problem can also be recast
as a static optimization problem by rewriting
the system equations and the cost functional as
follows.

Given the current state x(k), and equation (1),
the (predicted) future states up to time t = k+N

satisfy:

x(k) =




x(k + 1)
x(k + 2)

...
x(k + N)


 = Φu(k) + Λx(k),

where:

Φ =




B 0 . . . 0 0

AB B . . . 0 0
...

...
. . .

...
...

AN−1B AN−2B . . . AB B


 , Λ =




A

A2

...
AN


 .

Hence, the cost function (4) can be written in
vector form according to:

VN(x(k), u(k)) = VN(x(k)) + uT (k)Wu(k)

+ 2uT (k)Fx(k), (5)

where:

W = ΦTQΦ + R ∈ R
N×N, F = ΦTQΛ ∈ R

N×n,

Q = diag(Q, . . . , Q, P) ∈ R
Nn×Nn

R = diag(R, . . . , R) ∈ R
N×N

and VN(x(k)) does not depend on u(k).

Since W > 0 and the optimization (5) depends
on the vector of parameters x(k), this problem
is called a multi-parametric quadratic programme
(Bemporad et al., 2002). By direct calculation it
follows that the solution to this unconstrained
problem is:

u?
uc(x(k)) = −W−1Fx(k) (6)

and yields the receding horizon control law:

u?
uc(x(k)) = −

[
1 0 · · · 0

]
W−1Fx(k).

In the next section the geometry of the con-
strained optimization problem is exploited in or-
der to derive the constrained solution based upon
the unconstrained solution (6).



4. CONSTRAINED SOLUTION

Given the current state x(k), the level curves of
VN(x(k), u(k)) in (5) are ellipsoids centered at
u?

uc(x(k)) in the input sequence space R
N.

In the case of a finite constraint set U containing
nU elements, the sequence u(k) is constrained to
belong to the finite set U

N defined in (3).

The constrained optimization problem can be ge-
ometrically interpreted as follows: Find the point
u ∈ U

N, which belongs to the smallest ellipsoid
defined by (5) (i.e. the point which provides the
smallest cost while satisfying the constraints).

This geometrical problem can be simplified if, as
in (Seron et al., 2000), the following transforma-
tion is used:

ũ = W1/2u, (7)

so that the cost function becomes:

VN(x(k), ũ(k)) = VN(x(k)) + ũ
T (k)ũ(k)

+ 2ũ
T (k)W−1/2Fx(k). (8)

The level curves of this function are spheres in the
transformed input sequence space R

N, centered at

ũ
?
uc(x(k)) = −W−1/2Fx(k). (9)

As a consequence, an explicit characterization of
the constrained solution can be obtained. For this
purpose it is useful to introduce a nearest neighbor
vector quantizer as follows.

Definition 1. (Nearest Neighbor Vector Quantizer).
Given a countable (not necessarily finite) set of
non-equal vectors B = {b1, b2, . . . } ⊂ R

nB , the
nearest neighbor quantizer is defined as a map-
ping qB : R

nB → B which assigns to each vector
a ∈ R

nB the closest element of B (as measured by
the Euclidean norm), i.e., qB(a) = bi ∈ B if and
only if a belongs to the set:

{c ∈ R
nB : ‖c − bi‖ ≤ ‖c − bj‖, ∀bj 6= bi, bj ∈ B}

\ {c ∈ R
nB : ∃j < i such that ‖c − bi‖ = ‖c − bj‖} .

(10)

Note that the zero measure sets of points which
satisfy (10) with equality have been arbitrarily
assigned to the element having the smallest in-
dex. This is done in order to avoid ambiguity in
case of frontier points, that is, points which are
equidistant to two, or more, elements of B.

This definition allows one to state the following
result.

Theorem 2. Suppose U
N = {v1, v2, . . . , vr}, where

r = nN
U

, then the optimizing sequence for the
constrained problem (1)–(4) is given by:

u?(x(k)) = W−1/2q
ŨN(−W−1/2Fx(k)), (11)

where q
ŨN(·) is the nearest neighbor quantizer

(10), mapping R
N to Ũ

N. The image of the
mapping q

ŨN(·) is the set of transformed vertices,
defined as:

Ũ
N 4

= {ṽ1, ṽ2, . . . , ṽr}, ṽi = W1/2vi, vi ∈ U
N.

(12)

PROOF. The proof follows directly from the
foregoing discussion. Since the level curves of (8)
are spheres centered at ũ

?
uc(x(k)), the constrained

optimizer, among the transformed sequences ũ ∈
Ũ

N, is given by q
ŨN(ũ?

uc(x(k))). By using (7)
and (9), u? = u?(x(k)) = W−1/2ũ

?(x(k)) =
W−1/2q

ŨN(−W−1/2Fx(k)) is obtained. 2

It should be noted that q
ŨN(·) is a memoryless

nonlinearity, so that the control law (11) corre-
sponds to a time-invariant nonlinear state feed-
back law.

The receding horizon law corresponding to (11) is:

u?(x(k)) =
[
1 0 · · · 0

]
W−1/2q

ŨN(−W−1/2Fx(k)).

The above solution uses nearest neighbor quan-
tizers. These have been studied and used ex-
tensively in the context of signal encoding, see
e.g. the book by Gersho and Gray (1992). Due
to their simplicity they are suitable for on-line
implementation, which can be carried out directly
by performing r−1 comparisons at each time step.
Moreover, they introduce a polytopal partition
(called Voronoi partition) of their domain into
equivalence classes. This property will be used in
the sequel to derive an explicit characterization of
the resulting optimal control law, more suitable
for analysis and design purposes.

5. EXPLICIT STATE-SPACE
CHARACTERIZATION OF THE

CONSTRAINED SOLUTION

The solution (11) obtained in the previous sec-
tion is described according to the composition of
transformations:

x ∈ R
n −W− 1

2 F
−−−−−−−→ ũ

?
uc

q
ŨN(·)

−−−−−→ ũ
? W− 1

2

−−−−→ u? ∈ R
N,

(13)
where u? is the constrained optimum open-loop
sequence, ũ

? is the constrained optimum trans-
formed open-loop control sequence and ũ

?
uc is

the unconstrained optimum transformed open-
loop control sequence.

The quantizer q
ŨN(·) induces a partition of its

domain. Since the constrained optimizer in (11)
(see also (13)) is defined in terms of q

ŨN(·), an
equivalent partition of the state space can be
obtained.



By combining (10) and (11), it follows that
u?(x(k)) = vi, if and only if

x(k) ∈ Ri.

The regions Ri are defined as:

Ri
4
=

{
z ∈ R

n : ‖ − W−1/2Fz − ṽi‖
≤ ‖ − W−1/2Fz − ṽj‖, ∀ṽj 6= ṽi, ṽj ∈ Ũ

N
}

\
{
z ∈ R

n : ∃j < i such that ‖ − W−1/2Fz − ṽi‖
= ‖ − W−1/2Fz − ṽj‖

}}
.

The relation (12) allows one to establish an ex-
plicit state-space characterization of the finite-set
constrained solution:

u?(x(k)) = vi ⇐⇒ x(k) ∈ Ri,

with:

Ri =
{
z ∈ R

n : − 2(vj − vi)
T Fz

≤ (vj + vi)
TW(vj − vi), ∀vj 6= vi, vj ∈ U

N
}}

\
{
z ∈ R

n : ∃j < i such that

− 2(vj − vi)
T Fz = (vj + vi)

TW(vj − vi)
}}

.

(14)

It is worth noting that some of the inequalities in
(14) may be redundant. In these cases the corre-
sponding regions do not share a common border,
i.e. are not adjacent. For example, see Figure 3,
for the case N = 2, where the specification of R1

(and R4) require only 2 inequalities instead of 3.

The regions defined in (14) are polytopes. With-
out taking into account constraint borders, they
can be written in compact form as:

Ri =
{
x ∈ R

n : Dix ≤ hi

}
,

where the rows of Di are equal to all terms −2(vj−
vi)F as required, while the vector hi contains the
scalars (vj + vi)

T W(vj − vi).

On the other hand, some of the regions Ri may
be empty. However, if the pair (A, B) is completely
controllable and A is invertible, then the rank of
F is equal to min (N, n). Hence, if n ≥ N, then
−W−1/2F is onto, so that ∀ṽj ∈ Ũ

N there exist,
at least one, x such that q

ŨN(−W−1/2Fx) = ṽj.
In this case, none of the regions Ri are empty.

If N > n, the rank of F is equal to n and the
transformation does not span the whole space
R

N, so that some regions may be empty. This
is illustrated in Figure 1 for the case n = 1,
nU = 2 and N = 2. As can be seen, depending
on the unconstrained optimum locus given by
the (dashed) line −W−1/2Fx, x ∈ R, there are
situations in which some sequences ṽj will never
be optimal, yielding empty regions in the state
space (see also Figure 3 below).

����

����

����

����

ṽ1

ṽ3

ṽ4

ṽ2

no empty
regions

are empty
Regions R2 and R3

Fig. 1. Partition of the transformed input se-
quence space with N = 2 (solid lines) and
two examples of −W−1/2Fx, x ∈ R (dashed
lines)

Next consider the receding horizon case. To imple-
ment this policy only u?(k), the first element of
u?(k), is used. As a consequence, only nU instead
of nN

U
regions are needed to characterize the re-

ceding horizon control law. Each of these regions is
given by the union of all regions Ri corresponding
to vectors vi, having the same first element. The
following result is immediate, hence, it is stated
without a proof.

Corollary 3. Let the constraint set U = {u1, . . . , unU
},

and consider its partition into equivalence classes:

U
N
i

4
=

{
v ∈ U

N :
[
1 0 · · · 0

]
v = ui

}
,

U
N =

⋃
i=1,...,nU

U
N
i .

Then, the receding horizon law implementation of
the optimizer of (1)–(4) is:

u?(x(k)) = ui, if x(k) ∈ Xi, i = 1, 2, . . . nU,

where:

Xi =
⋃

j : vj∈U
N
i

Xij

Xij =
{
z ∈ R

n : − 2(vk − vj)
TFz

≤ (vk + vj)
T W(vk − vj), ∀vk ∈ U

N\U
N
i

}

\
{
z ∈ R

n : ∃ vk ∈ U
N\U

N
i , k < j, such that

− 2(vk − vj)
T Fz = (vk + vj)

T W(vk − vj)
}

.

Note that this description requires less evaluations
of inequalities than the direct calculation of the
union of all Rj (as defined in (14)) with vj ∈
U

N
i , since inequalities corresponding to internal

borders are not evaluated.

The closed loop obtained from the above con-
trol law is a piece-wise affine system with poly-
topal switching regions and hence belongs to



the class of discrete time switched hybrid sys-
tems, see e.g. (Branicky, 1998; Bemporad and
Morari, 1999). It also fits into the class of systems
having symbolic dynamics as e.g. in (Wu and
Chua, 1994; Ramadge, 1990).

Regarding the closed loop dynamics, in general
the state trajectories of the closed loop will be
dominated by its nonlinear and non-smooth dy-
namics that results form the nearest neighbor
quantizer q

ŨN(·). Indeed, the results of Ramadge
(1990) and Wu and Chua (1994) suggest that
for stable plants one will obtain limit cycles.
(Note that, given bounded inputs, the states of an
asymptotically stable plant are always bounded.)
When A is not a stability matrix, global stability
with a finite input constraint set cannot be en-
sured. The trajectories, if bounded, will in general
be non-periodic. Thus, at best, one can hope for
ultimate boundedness (Blanchini, 1999).

6. RELATIONSHIP TO SATURATION
CONSTRAINTS

Seron et al. (2000), and also Bemporad et al.
(2002), using a different methodology, have stud-
ied the case of input saturation (the convex prob-
lem defined over `1 norm constraints). These con-
tributors have shown that the receding horizon
implementation of the optimal control problem
can be finitely parameterized in closed loop and
calculated off-line. The state space is partitioned
into polytopes in which the receding horizon con-
troller is piece-wise affine in the state.

The transformed input sequence space partition
established by Seron et al. (2000) using a geomet-
ric argument similar to the one used in Section 4
is sketched in Figure 2 for the case N = 2 and
saturation interval [−∆, ∆]. The `1–constrained
optimizer ũ

?(x(k)) is related to the unconstrained
optimizer ũ

?
uc(x(k)) by a minimum Euclidean dis-

tance projection as follows.

If ũ
?
uc(x(k)) lies inside of the allowed region Θo

(the polytope formed by the transformed ver-
tices and containing the origin), then ũ

?(x(k)) =
ũ

?
uc(x(k)). On the other hand, if ũ

?
uc(x(k)) 6∈ Θo,

then the constrained solution is obtained by its
orthogonal projection to the border of Θo.

As a consequence, in the case of a binary con-
straint set, U = {−∆, ∆}, and plant state x(k)
such that −W−1/2Fx(k) 6∈ Θo, the borders of the
regions in the transformed input sequence space
(included as dotted lines in Figure 2) are parallel
and equidistant to the borders of those regions of
the `1–constrained case, which are adjacent to an
N−1–dimensional hyper-face of Θo. These regions
are denoted as Θsi in Figure 2. Due to linearity of
the transformation W−1/2F, the binary constraint
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ṽ1ṽ3

ṽ2
ṽ4

ũ
?
uc

ũ
?

Θo Θs2

Θs4

Θs3

Θs1

Fig. 2. Partitions of the transformed input
sequence space with `1–, and binary–
constraint sets (solid and dashed lines, re-
spectively)

regions Ri defined in (14) and the corresponding
state space regions given `1 constraints are sim-
ilarly related. This is illustrated in the example
of the next section which can be compared with
examples in (Seron et al., 2000).

7. EXAMPLE

A simple case of the above problem corresponds to
the symmetric binary constraint set U = {1, −1}.
In this case nU = 2 and r = 2N. Since u2 =
1, ∀u ∈ U, the value of R does not affect the
optimization of (4), so that R = 0 can be chosen.
(For the same reason, the solution of optimizing
(5) does not depend on the diagonal entries of W.)

The elements of U
N can be ordered according to

vT
i =

[
1 1 . . . 1

]
− 2

[
αN−1 αN−2 . . . α0

]
,

with αj, j = 0, . . . , N − 1 defined implicitly by:

N−1∑
j=0

αj2
j = i − 1, αj ∈ {0, 1}.

With this choice, in a receding horizon imple-
mentation, all the vertices v1, v2, . . . , vr/2 provide
the same control action and, due to symmetry,
ṽi = −ṽ(r+1−i), i = 1, . . . , r so that ‖ṽi‖2 =
‖ṽ(r+1−i)‖2.

Moreover, redundancies in the inequalities (14)
defining the regions Ri, can be found by using
the fact that the symmetrically opposed regions
Ri and Rr+1−i, do not have a common border, if

‖ṽi‖2 > min
k=1,...,r/2

‖ṽk‖2.

As an example, consider the set-up described in
(1)–(4) for the stable plant:

A =

[
0.2 1

0 0.9

]
, B =

1

15

[
2

1

]
, P = Q =

[
1 0

0 1

]
.
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Fig. 3. State space partitions

(In principle there is no impediment to include
higher order examples. Of course, at the expense
of additional computation time.)

Figure 3 illustrates the state space partition ob-
tained for optimization horizons N = 2, 3, 4, 5.
Note that for N ≥ 4, some regions are empty. The
receding horizon control law is:

u(k) =




1 if x(k) ∈
⋃

i=1,...,r/2

Ri,

−1 if x(k) ∈
⋃

i=r/2+1,...,r

Ri

and is also depicted in Figure 3.

8. CONCLUSIONS

This paper has studied the geometric structure
of the discrete time receding horizon quadratic
optimal control problem with finite input set con-
straints. The closed loop system obtained is piece-
wise affine, having polytopal switching regions
which are related to those arising when consid-
ering `1–constraint sets.

The results presented here are believed to open
the door to future work on related issues including
stability and a characterization of solutions to
more general hybrid control problems in the same
general framework.
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