
1. INTRODUCTION 

In modern commercial CAD and systems, a wide 
variety of part shapes for dies and molds are usually 
represented in parametric curves (or surfaces) like 
the Bezier curve, B-spline, and NURBS. However, 
conventional CNC machines only provide line or 
circular interpolators. In order to perform the 
machining of molds, the shapes and desired tool 
paths designed using CAD/CAM systems are 
typically approximated with very small line or 
circular segments. Such approximation approaches 
inherit several disadvantages: (1) for accurate 
machining the data file size is usually quite large so 
that the data transmission load is substantially 
increased; (2) will lead to velocity and acceleration 
discontinuity at the junction of line segments and 
may cause a shock or variation in mechanical system. 
These drawbacks suggest that the conventional 
interpolators fail to meet the requirements of 
high-speed machining in modern industry. Therefore 
the need to develop new parametric interpolators for 
CNC machines cannot be overlooked.  

The machining method used for parametric curves 
(or surfaces) is illustrated in Fig. 1 (Koren et al., 
1993) where parametric interpolator converts the 
parametric curve (or surface) segments designed in 
CAD systems to each axis’s servo command of CNC 
machines. Based on first- and second- order Taylor’s 
expansion or Runge-Kutta method, several 
investigators have proposed different kinds of 
parametric interpolators to generate servo commands 
for applications in constant feedrate control problems 
(Koren et al., 1993; Shpitalni et al., 1994; Wang et al., 
1998; Kuo et al., 2000). Nevertheless, the capability 
of performing variable feedrate control is invaluable 
in high-speed machining applications and deserves 
more study. Huang and Yang (1992) developed a 
cubic spline interpolator by using the first-order 
Euler approximation method to study the variable 
federate control problem. Their method yielded 
satisfactory performances as long as the curvature of 
the curve for machining was small. Yang and Kong 
(1994) proposed a parametric interpolator for 
variable feedrate based on the first- and second- 
order Taylor’s expansion. This is a comparative study 
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of linear and parametric interpolators on several 
aspects such as memory size, feedrate fluctuation and 
CPU time is presented. Zhang and Greenway (1998) 
developed a NURBS curve interpolator for the 
motion controller of a manipulator by using the 
first-order Taylor’s expansion, where as Yeh and Hsu 
(1999) proposed a speed-controlled interpolator for 
machining parametric curves. Farouki and Tsai (2001) 
have recently pointed out some problems with the 
Yang (1994) and Yeh (1999) interpolators, when 
formulating the second-order Taylor’s expansion 
interpolator for variable federate. Then they obtained 
exact Taylor series coefficients using the 
Pythagorean-Hodograph (PH) curves that have the 
closed-form analytic reductions of the interpolation 
integral. 

Part program

Parametric interpolataor

Servo controllers

Servo
commands

Parametric curve
or surface
segments

CNC

Curve Representation

CAD

CAD Model

CNC machines

Fig. 1. Machining method used for parametric curve 
or surface segments 

This paper presents numerical algorithms for 
realizing parametric interpolators that consider 
acceleration/deceleration planning on the desired 
velocity profile to achieve variable feedrate control. 
A test platform driven by two servomotors is used to 
evaluate the performance of the proposed parametric 
interpolator with variable feedrate in real-time, where 
the interpolation algorithms and servo controllers are 
implemented using a DSP. The powerful computation 
ability of the DSP makes it possible to eliminate the 
gap between theory and practice, which may provide 
an attractive cost-effective basis for modern control 
systems (Masten et al., 1997). In addition, the 
proposed interpolator is also applied to generate 
NURBS commands in several variable feedrate 
machining tasks.  

The remainder of the paper is organized as follows. 
Numerical algorithms for the variable feedrate 
parametric interpolators are developed in Section 2. 
In Section 3, NURBS representation for a parametric 
curve is briefly introduced. The motion control 
structure used in this study is given in Section 4. 
Experimental results are presented in Section 5, and 
conclusions are given in Section 6. 

2. VARIABLE FEEDRATE PARAMETRIC 
INTERPOLATORS 

The general form of a parametric curve in 3-D space 
can be described as 
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where u is a dummy variable used in the spatial 
parameter of the curve. In general, the feedrate along 
a curve P(u) is defined as 
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where ⋅  denotes the Euclidean norm in the 3-D 
space. Since u(t) is a strictly monotone increasing 
function with respect to t and also by the chain rule, 
one can obtain 
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Furthermore, it can be proved that the second 
derivative of u is given by 
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As can seen in Eq. (3), the feedrate V(t) is a function 
of the dummy variable u. An important question is 
raised as how to compute appropriate values of u(t) 
numerically to generate appropriate motion 
commands that yield desired feedrate along a 
parametric curve. To be qualified as a real-time 
interpolator for parametric curves, a computationally 
efficient solution of Eq. (4) is necessary. There are 
several existing algorithms that can be applied to 
solve du/dt numerically. One of the well known 
methods is based on the Taylor’s expansion, in which 
its second order approximation of du/dt at the time 
instant of kTtk = , is given by 
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where )( kk tuu =  denotes the value of u at time kt  
and  the first and second derivatives of u, defined in 
Eqs. (4) and (5), at kt are given by, respectively, 
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According to Eqs. (4)-(7), the first-order Taylor’s 
expansion interpolators for variable feedrate to 
generate 1+ku is expressed as 
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and the second-order Taylor’s expansion interpolator 
is expressed as 
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where )( kk tVV =  and 
ktt

k dt
tdVA

=
=

)( . 

Substituting 1+ku , obtained from Eqs. (8)~(9), into 
Eq. (1) will yield the next reference servo command 

)( 1+kuP  for the servo controller at sampling time 

1+kt . 

3. NURBS REPRESENTATION FOR 
PARAMETRIC CURVE 

Consider the NURBS represented parametrically by 
the following equations (Piegl, L. 1991) 
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where iV  represents the control points, iW  is the 
weight vector, and k is the order of NURBS. )(, uN ki  
is called the blending function, which is also called 
the basis function, and )(, uR ki  the single rational 
B-spline. From Eq. (10), the mth derivative of the 

)(uP  can be obtained as 
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where )()(
, uR m
ki represents the mth derivative of 

)(, uR ki .
 

Equations (13) and (14) provide the recursive 
formulas of computing )(, uN ki . 
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where [ ]kii uu +,, K  represents the knot vector. To 
implement the first- and second-order Taylor’s 
expansion interpolators, it is necessary to calculate 
the first and second derivatives of its NURBS 
representation. Eq. (15) and (16) show the 1st and 2nd 
derivatives of the rational B-spline: 
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Substituting Eq. (15) and Eq. (16) into Eq. (12) will 
yield the 1st and 2nd derivatives of the NURBS 
respectively. Nevertheless, to compute the 
derivatives of rational B-spline, the derivatives of 
blending function )(, uN ki  should be calculated first. 
The reduced order form of the mth derivative of 
blending function )(, uN ki  is expressed as 
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4. MOTION CONTROL STRUCTURE 

The overall motion control structure of the 
experimental system is shown in Fig. 2, where the 
PMC32-6000 motion control card, equipped with a 
high performance TI TMS320C32 DSP, is used to 
perform real-time computations. These include 
acceleration/deceleration planning, real-time 
variable-feedrate parametric interpolator and servo 
controller. All of interpolation algorithms and servo 
controller are implemented in C-language and 
executed using DSP. An X-Y table shown in Fig. 3 is 
used for experimental study where the table is driven 
by two servomotors with built-in incremental 
encoders (2500x4 pulses/rev) for position feedback. 

4.1 Acceleration/deceleration Planning 

In order to reduce the deterioration in accuracy 
resulting from excessive acceleration/deceleration of 
CNC machines, specific acceleration/deceleration 
planning on desired velocity profile is used to obtain 
smooth motion. In this study, velocity profiles as 
shown in Fig. 4 will be used as velocity profiles to 
generate desired variable feedrate Vk and acceleration 
Ak at each time instant kt . Thus, substituting Vk and 
Ak into Eqs. (8) and (9), parametric interpolator for 
variable feedrate control can be achieved. In addition, 
in this study the acceleration/ deceleration planning 
on the feedrate command is performed before the 
interpolation. This approach can effectively 



compensate the path command error caused by the 
way that the “acceleration/deceleration” is made after 
interpolation (Kim et al., 1994). 
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Fig. 2. Overall of motion control structure 

 
Fig. 3. The experimental system 
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Fig. 4. Different velocity profiles for variable 

feedrate parametric interpolator 

4.2 Servo Controller 

The block diagram of the servo controller used in this 
experimental system is shown in Fig. 5, where 
Xc , Yc  are the desired position commands; 
Xa ,Ya  are the actual positions and Kpx , Kpy  are 

the position gains. In addition, Kvx , Kvy  are the 
feed-forward coefficients, which can reduce the 
tracking errors. Note that position controllers for 
both X and Y–axis are only simple proportional gains 
with a feed-forward path (FAUNC, 1991). 

Transfer functions GX (s) and GY (s) of the controlled 
X-Y table are obtained by measuring the frequency 
responses from the power drive input to the motor 
shaft velocity. The transfer functions obtained from 
the control system analyzer HP3563A are 

10.113727677.601
543.112570)( 2 ++

=
ss

sGX    (mm/s-voltage) 

44.342115133.1649
874.319514)( 2 ++
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sGY
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With specifying desired damping ratio and natural 
frequency, the gain constants of the servo controller 
can be determined using MATLAB/SIMULINK such 
as 40=Kpx , 70=Kpy  and 6.0== KvyKvx  for 
the desired feedrate of 100 mm/s. 
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Fig. 5. Block diagram of servo controller 

5. EXPERIMENTAL RESULTS 

An illustrative example is given in the following to 
evaluate the performance of the proposed real-time 
variable feedrate parametric interpolator. The tasks 
for evaluation include: (1) computational efficiency 
analysis; (2) variable feedrate control for 
acceleration/deceleration planning. In this illustrated 
example the NURBS curve to represent a circle with 
radius 50 mm is shown in Fig.6, where the associated 
control points, weight vector and knot vector are 
assigned as below: 

The control points: (0, 0), (0, 50), (100, 50), (100, 0), 
(100, -50), (0, -50), (0, 0) (mm) 

The associated weight vector is [1.0, 0.5, 0.5, 1.0, 0.5, 
0.5, 1.0] 

The associated knot vector is [0, 0, 0, 0.25, 0.5, 0.5, 
0.75, 1, 1, 1] 
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Fig. 6. The NURBS curve with control points 

5.1 Computational Efficiency Analysis 

Since parametric interpolators should be 
implemented in a real-time environment, the issue of 
computational efficiency is of great concern in this 
study. In the efficiency analysis experiments, the 
desired feedrate is set to 100 mm/s and the 
acceleration/deceleration time for 
acceleration/deceleration planning is set to 0.5 s. 
Table 1 lists the total computation time for both (1) 
parametric interpolator with different acceleration 
/deceleration planning and (2) servo controller. 
According to experimental results, one can find that 
the first-order parametric interpolator can be 
implemented in real-time for the sampling period 
T=1ms. However, the second-order parametric 
interpolator is only suitable for T=2 ms. 

Table 1. Computation time for real-time control (µs) 

Parametric 
interpolator 

Acceleration/ 
deceleration 

planning type 

Computation 
time 

Servo 
controller

Trapezoidal 540 45 
Exponential 580 45 

 
First-order 

Bell shape 600 45 
Trapezoidal 1020 45 
Exponential 1040 45 

 
Second-order 

Bell shape 1140 45 

5.2 Variable Feedrate Control for 
Acceleration/deceleration Planning 

To perform acceleration/deceleration motion 
planning, the length of the parametric curve has to be 
calculated first. Then the total motion time 
corresponds to the desired feedrate and acceleration 
(deceleration) is computed. Consider the NURBS 
circle shown in Fig. 6. The total length of the circle is 

=Rπ2 314.1593 mm, where R=50 is the radius. 
Given the desired feedrate of 100 mm/s and 
acceleration (deceleration) time of 0.5s, then the total 
motion time is around 3.6416s. Several experiments 
based on different acceleration/deceleration planning 
have been performed using the first-order and 

second-order interpolators respectively. However, 
due to the paper length limit, only the parts related to 
the second-order interpolator are presented here. 

Figure 7 shows the actual feedrate and feedrate error 
along the parametric curve for three different 
acceleration/deceleration planning. It can be seen that 
the largest feedrate error (see Fig.7 (b)) is caused by 
the exponential acceleration/deceleration and the 
smallest feedrate error (see Fig.7 (c)) is by the bell 
shape acceleration/deceleration. Measured results of 
position tracking for using trapezoidal 
acceleration/deceleration planning for the cases 
before and after interpolation are illustrated in Figure 
8. As can be seen, the contouring error for the 
approach of acceleration/deceleration planning 
method before interpolation is smaller than that done 
by the approach using acceleration/deceleration 
planning method after interpolation. These 
experimental results have revealed that the proposed 
approach is able to effectively achieve the X-Y 
motion with variable feedrate control. 
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(a) Trapezoidal acceleration/deceleration 
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(b) Exponential acceleration/deceleration 
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(c) Bell shape acceleration/deceleration 

Fig. 7. Experimental results for 
acceleration/deceleration planning 
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Fig. 8. Experimental results for position tracking 

6. CONCLUSIONS 

In this study, a new interpolator based on variable 
feedrate parametric curves such as NURBS has 
developed to produce servo commands for real-time 
control CNC machining. Unlike most of existing 
parametric interpolators based on constant feedrate, 
the proposed interpolator is capable of generating 
motion commands for servo controllers to achieve 
the desired variable feedrate. Experimental results 
obtained from real-time DSP implementation have 
shown that the proposed approach is promising when 
dealing with the variable feedrate control problem. 
Also it should be noted that the contour error 
resulting from using the acceleration/deceleration 
method before interpolation is smaller than when 
using it after interpolation. 
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