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Abstract: The robust stability condition for sampled-data control systems with a sector nonlinearity
was presented in our previous paper. Although it is applicable only to the sampled-data control
system of a certain class, a usual discrete-time control system can belong to this type of class. This
paper analyzes the amplitude dependent behavior of nonlinear sampled-data (i.e., discrete-time)
control systems in a frequency domain. First, the robust stability condition which was derived in
our previous papers is applied to a sampled-data system containing a single time-invariant nonlinear
element. Then, an instability condition for that type of nonlinear feedback system is derived. By
considering restricted areas (two sectors) in the nonlinear characterisitic, the existence of a sustained
oscillation is estimated (whether it is periodic or not), and the relationship between the stable
(unstable) conditions and the result which is derived from the classic describing function is compared.
Based on these considerations, the stabilization of nonlinear discrete-time control systems is examined
in the frequency domain. Copyright ©c 2002 IFAC
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1. INTRODUCTION
This paper analyzes the amplitude dependent be-
havior of nonlinear sampled-data control systems
in a frequency domain. In actuality, a sustained
oscillation (whether it is periodic or not) cannot
be avoided in the response of nonlinear dynamical
systems. Nonetheless, the practical analysis and
design method is only a graphical and approxi-
mated version for a periodic oscillation in respect
to continuous-time systems, that is, describing
function, in other words, the harmonic balance
method(Atherton, 1975). However, as for discrete-
time system, there is no method in particular to
analyze and design such a control system.

In this paper, first, the robust stability condi-
tion which was derived in our previous papers
is applied to a sampled-data system containing
a single time-invariant nonlinear element. Then,
an instability condition for that type of nonlinear
feedback system is derived as an inverse problem.
By considering restricted areas (two sectors) in

the nonlinear characterisitic, the existence of a
sustained oscillation is estimated, and the rela-
tionship between the stable (unstable) conditions
and the approximated result which is derived from
the classic describing function is compared. Based
on these considerations, the stabilization of non-
linear discrete-time control systems is examined
in the frequency domain.

2. EQUIVALENT CLOSED LOOP SYSTEM
In our previous paper(Okuyama et al., 1996;
Okuyama et al., 1999), the robust stability for
nonlinear sampled-data control systems was an-
alyzed in the frequency domain as a natural ex-
pansion of Popov’s criterion for continuous-time
systems. The control system to be considered
here is a sampled-data control system with time-
invariant nonlinear characteristic N(·) as shown
in Fig. 1. Here, H is the zero-order-hold which
is usually performed in A/D(D/A) converter and
G(s) is the transfer function of the system to be
controlled, which is expressed by continuous-time.
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In addition, suppose that nonlinear characteristic
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Fig. 1. Nonlinear sampled-data control system.
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Fig. 2. Equivalent nonlinear discrete-time system.
N(·) is time-invariant and can be written as

N(e) = K(e + n(e) + ν(e)), 0 < K < ∞ (1)

|w| = |n(e)| ≤ α|e|, 0 < α < 1 (2)

|w′| = |ν(e)| < ∞, (3)

where n(e) and ν(e) are nonlinear terms relative
to nominal linearized gain K. By rearranging the
nonlinear sampled-data control system, Fig. 2 can
be obtained, where G(z) is the z-transform of G(s)
together with zero-order-hold H. In Fig. 2, r, e,
w, · · · denote discrete-time variables r(kh), e(kh),
w(kh), · · ·. (Hereafter, these will be abbreviated
as r(k), e(k), w(k), · · ·).
As for the robust stability (in other words, ab-
solute stability) analysis, it is sufficient to con-
sider only nonlinear term n(e), because nonlinear
term ν(e) can be treated as a disturbance signal.
(Althuogh the absolute value of nonlinear term
|K(e + n(e))| will be unbounded for |e| → ∞, the
absolute value of |Kν(e)| is bounded. Thus, the
global stability of that type of nonlinear system
is defined by the nonlinear characteristic K(e +
n(e))).

Consider new sequences e∗m(k) and w∗
m(k) (k =

1, 2 · · · , N) which satisfy the following equation:

e∗m(k) = em(k) + q · ∆e(k)
h

, (4)

w∗
m(k) = wm(k)− αq · ∆e(k)

h
, (5)

where q is a non-negative number, em(k) and
wm(k) are neutral points of sequences e(k) and
w(k), respectively, i.e.,

em(k) =
e(k) + e(k − 1)

2
, wm(k) =

w(k) + w(k − 1)

2
,

and ∆e(k) = e(k) − e(k − 1) is the backward
difference of error. The relationship between these
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Fig. 3. Nonlinear subsystem.

equations is shown by the block diagram in Fig.
3. In this figure, δ is defined as

δ(z) :=
2
h
· 1− z−1

1 + z−1
. (6)

Eq. (6) corresponds to the bilinear transformation
approximation between z and δ when relating δ to
Laplace transform variable s for a continuous-time
system. Then, the loop transfer function from w∗

to e∗ can be given by F (α, q, z) as shown in Fig.
4. Here,

F (α, q, z) =
(1 + qδ(z))KG(z)

1 + (1 + αqδ(z))KG(z)
, (7)

and r′, d′ are transformed exogenous inputs.
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Fig. 4. Equivalent closed loop system.

3. PRELIMINARIES
Let us define a new nonlinear function such as
f(e) := n(e) + αe. This function belongs to
the first and third quadrants. Considering the
equivalent linear characteristic which varies with
discrete-time k = 1, 2, · · · , it can be written as

0 ≤ γ(k) :=
f(e(k))

e(k)
≤ 2α. (8)

When this type of γ(k) is used, sector inequality
(2) can be expressed as n(e(k)) = (γ(k)− α)e(k).

The following assumption will be provided in re-
gard to the nonlinear characteristics to avoid the
difficult problems that are peculiar to nonlinear
sampled-data control systems (Kalman, 1957).
[Assumption-1] Error sequence e(k) passes the
origin. Specifically, the relationship γ(k − 1) =
γ(k) is maintained whenever e(k − 1)e(k) < 0.
Therefore, the line between coordinates (e(k −
1), f(e(k − 1)) and (e(k), f(e(k))) by linear inter-
polation also passes the origin. 2

This assumption is not too inaccessible. If the
sampling period is shorter than the transient re-
sponse of the system, variations of error ∆e(k)
are also expected to be small when the sequence



passes the origin. Hence, Assumption-1 will be
satisfied. Even if the sampling period is relatively
long, it will be satisfied when nonlinear charac-
teristics are gentle around the origin. Therefore,
the above covers a considerably wide range of
problems.

Based on the above premise, the following prop-
erties can be shown.
[Lemma-1] For a positive integer N (the num-
ber of steps), the following inequality holds:

‖wm(k)‖N ≤ α‖em(k)‖N . (9)

(Proof) The proof is omitted. 2

[Lemma-2] If the following inequality is satisfied
in regard to the inner product of the neutral points
of f(e) and the backward difference of error:

〈 wm(k) + αem(k), ∆e(k) 〉N ≥ 0, (10)

the following can be obtained

‖w∗
m(k)‖N ≤ α‖e∗m(k)‖N (11)

for any q ≥ 0. In the above, < ·, · >N and ‖ · ‖N
denote the inner product and the `2 norm in the
N dimensional space, respectively.
(Proof) The proof was written in our previous
papers (Okuyama et al., 1996; Okuyama et al.,
1999). 2

The left side of Eq. (10) can be expressed in terms
of nonlinear function f(·).
[Lemma-3] For any step N , the following
equation is valid:

〈 wm(k) + αem(k), ∆e(k) 〉N

=
1

2

N∑
k=1

(f(e(k)) + f(e(k − 1)))∆e(k). (12)

(Proof) The proof is omitted. 2

If σ(N) was used for the right side of Eq. (12),
it can be shown that σ(N) is the total area of
the trapezoid formed by sampling point (f(e(k −
1)), f(e(k))) on nonlinear curve f(e) and error
step width ∆e(k). The total area of trapezoid
σ(N) can be rewritten by the following.
[Lemma-4] For any step N ,

σ(N) =
1

2
(f(e(N))e(N) − f(e(0))e(0)) + ε(N), (13)

where ε(N) =
1

2

N∑
k=1

f0(k) · ∆e(k). Here, f0(k) is an

intercept at which the straight line passing sample
points pk and pk−1 on the nonlinear function f(e)
intersects the vertical axis.
(Proof) The proof is omitted. 2

4. CLASSES OF SAMPLED-DATA SYSTEMS
[Assumption-2] The total area of a trapezoid,
allowing for signs of coordinate (e(k), f(e(k))),

(k = 0, 1, 2, · · · , N) which traces a nonlinear curve
is always non-negative (i.e., σ(N) ≥ 0 regardless
of the transient response. 2

Although this Assumption seems to be too inac-
cessible, some of the following sampled-data sys-
tems can satisfy it.

(1) Nonlinear sampled-data systems, of which
point (e(k), f(e(k))) traces the same points on
the nonlinear curve belongs to Class Sc.

(2) Nonlinear sampled-data systems (which sat-
isfy ε(N) = 0 at any step N , i.e., f0(k) = 0
(k = 1, 2, · · · , N)) are classified into Class Sl.

(3) Nonlinear sampled-data systems which sat-
isfy ε(N) ≥ 0, at any step N (i.e., f0(k) ·
∆e(k) ≥ 0, (k = 1, 2, · · · , N)) are classified into
Class Sr.

Note: The fulfillment of (3) is expected from sys-
tems where response (e(k), f(e(k))) on a nonlinear
curve turns in a clockwise direction. The systems
in Class Sr naturally contain the above-mentioned
systems of Class Sl which satisfies ε(N) = 0.

5. ROBUST STABILITY CONDITION
As was described in our previous paper (when
using the subsystem in Fig. 3 instead of nonlin-
ear element n(·) in Fig. 2), the robust stability
condition for the above system can be given by
using a small gain theorem in regard to the closed
loop system as shown in Fig. 4.
[Theorem-1] If there exists a q ≥ 0 in which
the sector parameter α in regard to nonlinear
term n(·) satisfies the following inequality, then
the nonlinear sampled-data control system in Fig.
1 (equivalent to Fig. 2) is robust (or absolute)
stable in the `2 sense:

ξ(q, ω) =
U2 + V 2

−qΩV +
√

q2Ω2V 2 + (U2 + V 2){(1 + U)2 + V 2}

<
1

α
, ∀ω ∈ [0, ωc]. (14)

Here, Ω(ω) is the distorted frequency of ω, and is
given as

δ(ejωh) = jΩ(ω) = j
2

h
tan

(
ωh

2

)

from Eq. (6), and ωc is a cut-off frequency which is
the range satisfying Shannon’s sampling theorem.
Moreover, U and V are the real and the imaginary
parts of KG(ejωh), respectively.
(Proof) The proof is obtained from

|F (α, q, ejωh)| =

∣∣∣∣
(1 + jqΩ(ω))KG(ejωh)

1 + (1 + jαqΩ(ω))KG(ejωh)

∣∣∣∣ <
1

α
.(15)

based on Eq. (7). 2 (Okuyama et al., 1999;
Okuyama et al., 1998a)

Theorem-1 corresponds to a discrete-time version
of Popov’s criterion (Harris et al., 1983). Since



inequality (14) in Theorem-1 is for all ω consid-
ered and a certain q, the condition results in the
following min-max problem:

ξ(q0, ω0) = min
q

max
ω

ξ(q, ω) <
1
α

. (16)

That is, if inequality (16) is satisfied, the nonlinear
sampled-data system as shown in Fig. 1 is stable
when the nominal linear sampled-data system
with gain K is stable.

6. INSTABILITY CONDITION
On the contrary, in this section, instability prob-
lem of the nonlinear discrete-time system is ex-
amined when the nominal system with gain K is
unstable(Desoer and Vidyasagar, 1975). Consider
the frequency transfer function F (α, q, ejωh) to be
a linear causal operator F in an `2 space, i.e.,
F : `2 → `2. In addition, F is assumed to be
unstable in the sense that

U = {u′m ∈ `2 | v′m = Fu′m ∈ `2} (17)

is not all of `2. Obviously, U is a set of stabilizable
inputs u′m (which is a subspace of `2). Here, u′m
and v′m are neutral points of sequences u′(k) and
v′(k), respectively.

Since U is not all of `2, the orthogonal subspace of
it, U⊥, is nontrivial in the `2 space. If exogenous
input d′m exists in the orthogonal subspace (i.e.,
d′m ∈ U⊥), 〈u′m, d′m〉N = 0 must hold. In such a
case, from the relation w∗ = u′ − d′,

‖w∗
m‖2

N = ‖u′m‖2
N − 2〈u′m, d′m〉N + ‖d′m‖2

N ,

= ‖u′m‖2
N + ‖d′m‖2

N .

Hence,

‖w∗
m(k)‖N ≥ ‖u′m(k)‖N . (18)

Furthermore, when considering e∗ as a stabilizable
input, the following set is given:

E = {e∗m ∈ `2 | v′m = F(w∗
m + d′m) ∈ `2} (19)

Since E is similarly not all of `2, the orthogonal
subspace of it, E⊥, is nontrivial in the `2 space.
If exogenous input r′m exists in the orthogonal
subspace (i.e., r′m ∈ E⊥), 〈r′m, e∗m〉N = 0 must
hold. From the relation v′ = r′ − e∗,

‖v′m‖2
N = ‖r′m‖2

N − 2〈r′m, e∗m〉T + ‖e∗m‖2
T ,

= ‖r′m‖2
N + ‖e∗m‖2

N .

Hence,

‖v′m(k)‖N ≥ ‖e∗m(k)‖N . (20)

By using inequalities (11), (18) and (20), the
following relation is obtained:

‖u′m(k)‖N ≤ α‖v′m(k)‖N . (21)

Then, inequality (21) can be rewritten as follows:

‖u′m(k)‖N ≤ α sup
ω

|F (q, α, ejωh)| · ‖u′m(k)‖N . (22)

However, if a small gain theorem (Desoer and
Vidyasagar, 1975), i.e.,

sup
ω
|F (q, α, ejωh)| < 1/α (23)

is satisfied for any q ≥ 0, the above inequality (22)
is contradicted for N → ∞. Thus, the following
should be written:

u′m /∈ `2 and v′m /∈ `2. (24)

It is obvious that the nonlinear discrete-time feed-
back system is unstable. Thus, the following the-
orem can be given.
[Theorem-2] If a small gain theorem (23) in
regard to the closed loop system as shown in Fig.
4 is satisfied (i.e., inequalities (14), (16) are satis-
fied), the nonlinear discrete-time feedback system
is unstable when the nominal linear discrete-time
system with gain K is unstable.
(Proof) The proof would be obvious from the
above derivation process. 2

7. DESCRIBING FUNCTION AND
STABILIZATION

A method of the amplitude dependent stability
analysis for actual higher order nonlinear systems
is harmonic balance, i.e., describing function. Al-
though the analysis is based on an approximation
in the Fourier series expansion, it is still a useful
method for designing a nonlinear feedback system.
In complex numbers, the describing function is
defined as N(A) =

U1

A
· ejφ1 , where A is the am-

plitude of input signal to the nonlinear function,
U1 =

√
a2
1 + b21 and φ1 = − tan−1 b1

a1
. When con-

sidering the above in a discrete-time domain, the
following expression can be given:

a1 =
4θ

2π

π∑
θ=−π

(u(θ) cos θ + u(θ +4θ) cos(θ +4θ)),

b1 =
4θ

2π

π∑
θ=−π

(u(θ) sin θ + u(θ +4θ) sin(θ +4θ)).

Here, θ = kωh and 4θ = ωh. By using these
equations, describing function, e.g., a1 can be
calculated numerically.

The results of Theorem-1 and Theorem-2 can be
applied to the design of nonlinear discrete-time
control systems. That is, an appropriate nonlinear



gain and a stabilizing compensator C as shown
in Fig. 4 are determined based on the above
concept. In this paper, the following phase lead
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Fig. 5. Nonlinear discrete-time system with stabi-
lizing compensator C.

compensator is used(Okuyama et al., 1998a):

C =
δ + a

δ + b
, 0 < a < b. (25)

8. NUMERICAL EXAMPLES
[Example-1] Consider the following controlled
system:

G(s) =
(s + 6)

s(s + 1)(s + 2)
. (26)

The stability region for linear gain K can be given
by 0 < K < 1.2 when the sampling period is
chosen as h = 0.2. When choosing the nominal
gain K = 0.7, ξ(q0, ω0) = 1.39 and α < 0.72 are
obtained from Eqs. (14) and (16). The stability
region (stable sector) becomes [0.19, 1.20]. (In this
case, Aizerman’s conjecture is valid(Okuyama et
al., 1998b)). On the other hand, when choosing
the nominal gain K = 1.7, the instability region
(unstable sector) can be determined as [1.49, 1.91].
Figure 6 shows the stable/unstable sectors and a
nonlinear characteristic. Here, sigmoid type func-
tion N(e) =

4

π
· tan−1(4e3(t)) is considered as a

nonlinear curve.

As shown in the figure, there is an area between
stable and unstable sectors, which cannot be de-
fined. Figure 7 shows time responses of the non-
linear discrete-time control system. In this exam-
ple, stable/unstable (pseudo)periodic behaviors
will be seen in the responses, which correspond
to unstable/stable limit cycles for a continuous-
time system in a state space. The amplitude of
sustained oscillation can approximately be esti-
mated from stable/unstable sectors shown in Fig.
6 and from describing function shown in Fig. 8.
When using a phase lead compesator given in
Eq. (25) such as C =

δ + 2.5

δ + 3.0
, the stability region

can be determined as, e.g., 0.12 < K < 1.68.
The sampled-data control system is stabilized as
shown in Fig. 9.
[Example-2] Consider the following controlled

Fig. 6. Nonlinear characteristic and sta-
ble/unstable sectors for Example-1.

Fig. 7. Time responses for Example-1 (r = e(0) =
0.6, 0.7, 2.5).

Fig. 8. Describing function for Example-1.

Fig. 9. Stabilized results for Example-1 using a
phase lead compensator (r = e(0) = 0.8, 1.0).

system:

G(s) =
2.5(s + 0.5)

s(s + 2)(s− 1)
. (27)

In this example, the stability region can be given
by K > 1.91 when the sampling period is chosen



as h = 0.05. When choosing the nominal gain
K = 2.5, ξ(q0, ω0) = 4.22 and α < 0.24 are
obtained from Eqs. (14) and (16). The stable
sector becomes [1.91, 3.09]. (The Aizerman con-
jecture is valid also in this case for the lower
bound.) On the other hand, when choosing the
nominal gain K = 1.0, ξ(q0, ω0) = 4.65 and
α < 0.21 are obtained. Thus, the unstable sector
becomes [0.78, 1.21]. Here, sigmoid type function
N(e) = 0.5e(t) + tan−1(10e3(t)) is considered as
a nonlinear curve.

Figure 10 shows the nonlinear characteristic and
the stable/unstable sectors. As is obvious from the
figure, there is a considerable size of undefined
area between the stable and the unstable sectors.
However, we can also estimate a sustained oscilla-
tion which corresponds to a stable limit cycle for
a continuous-time system in a state space. When
using the same compesator as shown in Example-1
and adjusting slightly the nonlinear characteristic
as N(e) = 1.5e(t) + tan−1(10e3(t)), the sampled-
data control system is stabilized as shown in Fig.
12.

Fig. 10. Nonlinear characteristic and sta-
ble/unstable sectors for Example-2.

Fig. 11. Time responses for Example-2 (r =
e(0) = 0.1, 0.7).

9. CONCLUSIONS

This paper analyzed the amplitude dependent be-
havior of nonlinear sampled-data control systems
in a frequency domain. First, the robust stabil-
ity condition which was derived in our previous
papers was applied to a sampled-data control sys-
tem containing a single time-invariant nonlinear
element in the forward path. Then, an instabil-
ity condition for that type of nonlinear feedback

Fig. 12. Stabilized results for Example-2 (r =
e(0) = 0.1, 0.7).

system was derived. By considering two sectors
(stable and unstable) in the nonlinear character-
istic, the existence of a sustained oscillation could
be estimated. This conept will be extended to
the multi-loop nonlinear discrete-time feedback
systems(Okuyama et al., 2001).
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