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Abstract: This paper establishes a method for quantifying variance error in cases where
the input spectral density has a rational factorisation. Compared to previous work which
has involved asymptotic-in-model-order techniques and yielded expressions which are only
approximate for finite orders, the quantifications provided here are exact for finite model
order, although they still only apply asymptotically in the observed data length. The key
principle employed here is the use of a reproducing kernel in order to characterise the model
class, and this implies a certain geometric-type approach to the problem.
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1. INTRODUCTION

There has been much work over the last several years
directed at quantifying the noise induced error (vari-
ance error) in frequency response estimates (L.Ljung
and Z.D.Yuan 1985, L.Ljung 1985, P.M.J. Van den Hof
et al. 1995, Wahlberg 1991, Wahlberg 1994, Ninness
et al. 1999). In these contributions, in the interests of
tractable analysis, a common theme has been to consider
the limiting value of the variance error as the model or-
der grows, and then assume that this same value can be
approximately used for finite model order.

This approach leaves open the question of the accuracy of
the ensuing approximate quantification, and indeed recent
works (P.M.J. Van den Hof et al. 1995, Wahlberg 1991,
Wahlberg 1994, Ninness et al. 1999) have specifically
addressed the issue by using certain orthonormal basis
techniques designed to maximise the finite model order
accuracy.

The paper here takes a different approach, and shows
how in some circumstances it is possible to quantify
the variance error in a manner that is exact even for
finite model order, although it is still asymptotic in the
data length. The key technique used to achieve this is a
geometric one, in which recognition of certain subspace
invariants (reproducing kernels) provides a means for the
exact quantification.

The importance of this issue of non-asymptotic in model
order variance quantification has been recognised by other
authors (Xie and Ljung 2000), who have employed an
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analysis technique that is quite different to that of this
work. The penultimate section of this paper profiles the
results of this approach versus the one taken here.

2. PROBLEM SETTING
The estimation problem considered here is one in which
observed input-output data {yt}, {ut} is generated ac-
cording to

yt = G(q)ut + et.

Here {et} is a zero-mean white noise sequence that sat-
isfies E{e2t} = σ2. As well, G(q) is assumed to be
an n’th order rational transfer function with poles at
{ξ0, · · · , ξn−1}, and {ut} is taken to be a second order
stationary process with associated spectral density 0 <
Φu(ω) <∞.

For the purposes of estimating the dynamics G(q), it is
supposed that the following parameterised model struc-
ture is used

yt = G(q, θ)ut + et (1)

where

G(q, θ) = A−1(q)
n−1∑

k=0

θkq
k, A(q) =

n−1∏

k=0

(q − ξk).

Here, the fixed poles {ξ0, · · · , ξm−1} are meant to be
chosen via a-priori knowledge (Wahlberg 1991, Wahlberg
1994, Heuberger et al. 1995, P.M.J. Van den Hof et
al. 1995), and the special case of ξk = 0 renders (1) as
the common FIR model structure.

With this in mind, an estimate θ̂N of θ , [θ0, · · · , θn−1]
T

based on N observations of {yt} and {ut} may be found
via a “least squares” approach:
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θ̂N = arg min
θ

VN (θ) (2)

VN (θ) ,
1

N

N∑

t=1

(yt −G(q, θ)ut)
2
.

Furthermore, since G(q) is assumed to be n’th order,
then there exists a true parameter vector θ◦ such that
G(q, θ◦) = G(q) and hence with

ψt = A−1(q)Λ(q)ut, Λ(q) , [qn−1, · · · , q, 1]T (3)

it is clear that the expression

θ̂N − θ◦ =

(
1

N

N∑

t=1

φtφ
T
t

)−1

1

N

N∑

t=1

φtet (4)

is a quantification of the parameter space estimation er-
ror. Furthermore, since the estimated frequency response
G(ejω , θ̂N ) depends linearly on the parameter estimate
θ̂N according to

G(ejω , θ̂N ) = A−1(ejω)ΛT (ejω)θ̂N

then the frequency response estimation error may be
quantified from (4) as

G(ejω , θ̂N ) −G(ejω)=A−1(ejω)ΛT (ejω) ×
(

N∑

t=1

φtφ
T
t

)−1
N∑

t=1

φtet (5)

Of course, this expression (5) depends on the exact noise
realisation {et} which cannot be known, so in order to
quantify the estimation error G(ejω , θ̂N) − G(ejω) it
is usual to consider its average over the ensemble of
possible noise realisations. That is, consideration is given

to Var
{
G(ejω , θ̂N )

}
, which by (5) and assuming open-

loop data collection, may be computed as

Var
{
G(ejω , θ̂N )

}
=
σ2

N

Λ?(ejω)R−1

N Λ(ejω)

|A(ejω)|2
(6)

where

RN ,
1

N

N∑

t=1

φtφ
T
t

and ·? represents the operation of ‘conjugate transpose’.

Now, while (6) gives an exact quantification of the noise
induced estimation error, it does not expose very much
about how experiment design choices (or other factors)
might affect it. In consideration of this, the approach
pioneered in works such as (Whittle 1953, Hannan and
Nicholls 1977, L.Ljung and Z.D.Yuan 1985) is to notice
that according to the assumptions made on the input

R , lim
N→∞

RN = Tn

(
Φu

|A|2

)
(7)

,
1

2π

π∫

−π

Λ(ejλ)Λ?(ejλ)
Φu(λ)

|A(ejλ)|2
dλ. (8)

Here, the notation Tn(Φu) is chosen to denote a Toeplitz
matrix, of size n × n, that is completely characterised by
the spectral density function Φu. In fact, a well known
feature of such matrices is that for large n, then

T−1

n

(
Φu

|A|2

)
≈ Tn

(
|A|2

Φu

)

where the approximation sign means that the Hilbert–
Schmidt matrix norm (Golub and Loan 1989) between the
two quantities can be made arbitrarily small for arbitrarily
large model roder n (Grenander and Szegö 1958). In this
case, for the same large n it is inviting to approximate

Var
{
G(ejω , θ̂N )

}
from (6) as

Var
{
G(ejω , θ̂N )

}
≈
σ2

N
·

1

|A(ejω)|2
×

Λ?(ejω)Tn

(
|A|2

Φu

)
Λ(ejω). (9)

Finally, note that

1

n
Λ?(ejω)Tn

(
|A|2

Φu

)
Λ(ejω) =

1

2nπ

π∫

−π

|Λ?(ejω)Λ(ejλ)|2
|A(ejλ)|2

Φu(λ)
dλ =

N−1∑

τ=1−N

(
1 −

|τ |

N

)
cτe

jωτ (10)

where the {cτ} are the Fourier co-efficients of |A|2/Φu:

cτ ,
1

2π

π∫

−π

|A(ejλ)|2

Φu(λ)
e−jλτ dλ. (11)

Since the Fourier series in (10) can be expected to
converge to the function |A|2/Φu determining its co-
efficients via (11), it is arguable via (9), (10) that for large
model order n

Var
{
G(ejω , θ̂N)

}
≈
σ2n

N
·

1

|A(ejω)|2
·
|A(ejω)|2

Φu(ω)

=
n

N

σ2

Φu(ω)
. (12)

In contrast to (6), this approximate expression (12) very
clearly exposes the key factors that contribute to the noise
induced estimation error. As such, its use has become
a fundamental part of the science of System Identifica-
tion (Ljung 1999) since it was first presented for the
FIR case ({ξk} = 0) in (L.Ljung and Z.D.Yuan 1985)
and then extended to much more general model struc-
tures in (L.Ljung 1985, P.M.J. Van den Hof et al. 1995,
Wahlberg 1991, Wahlberg 1994).

However, as argued in (Ninness et al. 1999, Ninness and
Hjalmarsson 2001a, Ninness and Hjalmarsson 2001b),
this reliance can be misplaced. For example, the ‘Achillee’s
Heel’ of (12) is that it clearly depends on the model order



n being large in order for the approximating steps to
be accurate. In recognition of this, the work (Ninness et
al. 1999) has suggested that a quantification that can be
more reliable for low model order n is

Var
{
G(ejω , θ̂N )

}
≈

1

N
·

σ2

Φu(ω)
·

n−1∑

k=0

1 − |ξk|
2

|ejω − ξk|
(13)

Note that as pointed out in (Ninness et al. 1999, Xie
and Ljung 2000), the greater the proportion of the poles
{ξk} located at the origin, the closer the approximation
(13) is to the seminal one (12), and when all the poles
are at the origin, then (12) becomes a special case of
(13). Nevertheless, the approximation (13) still depends
on high model order n in order to obtain high accuracy.

In recognition of this last point, the purpose of this paper
is to derive an expression for

lim
N→∞

Var
{
G(ejω , θ̂N )

}

that is exact for finite model order n.

3. MATHEMATICAL BACKGROUND
The key tool used in this paper is what might be called
a geometric one, and it depends on the idea of a ‘Repro-
ducing Kernel’. To explain this, note that any frequency
response of interest can be assumed to lie in a certain
Hilbert Space H2, where any geometric ideas such as or-
thogonality are obtained from the inner product between
two functions f, g ∈ H2 which is defined as

〈f, g〉µ ,
1

2π

π∫

−π

f(λ)g(λ) µ(λ) dλ (14)

with µ(λ) being some positive definite ‘weighting’ func-
tion.

Now, suppose that f is an element of an n-dimensional
subspace Xn defined by certain orthonormal basis ele-
ments ϕ0, · · · , ϕn−1 as

f ∈ Xn , Span {ϕ0, · · · , ϕn−1} .

Then it is a consequence of the Riesz Representation
Theorem(Riesz and Sz.-Nagy 1955, Rudin 1966) that for
any fixed ω, a further elementKn(λ, ω) ∈ Xn exists such
that

f(ω) = 〈f(λ),Kn(λ, ω)〉µ ∀f ∈ Xn. (15)

This reproducing kernel will be vital to the arguments of
this paper, so it is important to present its fundamental
features. Firstly it is ‘Hermitian Symmetric’ in that, since
for any fixed λ the kernel Kn(ω, λ) ∈ Xn, then (integra-
tion in the inner product is with respect to the common
variable)

Kn(ω, λ) = 〈Kn(σ, λ),Km(σ, ω)〉µ

= 〈Kn(σ, ω),Kn(σ, λ)〉µ = Kn(λ, ω).

This then implies that Kn(ω, λ) is the unique element in
Xn that has the property (15), since if another function
Hn(ω, σ) also satisfied (15), then it would hold that

Hn(ω, λ) =Hn(ω, λ)

= 〈Hn(σ, λ),Kn(σ, ω)〉µ

= 〈Kn(σ, ω), Hn(σ, λ)〉µ = Kn(λ, ω).

Finally, although the reproducing kernel is unique, there
may (of course) be many different ways of expressing it.
One obvious one uses the orthonormal basis {ϕk} forXn

to express the quantity as

Kn(λ, ω) =

n−1∑

k=0

ϕk(λ)ϕk(ω). (16)

This formulation can be verified by noting that if Xn 3
f =

∑
τ cτϕτ for some constants cτ , then

〈
n−1∑

τ=0

cτϕτ (λ),

n−1∑

k=0

ϕk(λ)ϕk(ω)

〉

µ

=

n−1∑

τ=0

cτ

n−1∑

k=0

ϕk(ω)〈ϕτ (λ), ϕk(λ)〉µ =

n−1∑

τ=0

cτϕτ (ω) = f(ω). (17)

4. MAIN RESULT

With these preliminary ideas in mind, then as just argued
via (6) and (9)

lim
N→∞

NVar
{
G(ejω , θ̂N )

}
=

σ2

|A(ejω)|2
· Λ?(ejω)T−1

n

(
Φu

|A|2

)
Λ(ejω). (18)

The challenge then is to quantify this quadratic form in an
exact manner, as opposed to the previously profiled ap-
proximation schemes based on asymptotic analysis. This
ambition may be achieved by the following Theorem,
which is the main result of the paper.

Theorem 4.1. Suppose that Φu(ω) has a finite dimen-
sional rational spectral factorisation

Φu(ω) = κ2Ψ(ejω)Ψ(ejω), Ψ(z) ,

ν−1∏

t=0

(
z − βt

z − αt

)
.

Then

1

|A(ejω)|2
Λ?(ejω)T−1

n

(
Φu

|A|2

)
Λ(ejω)

=
1

κ2

n−1∑

k=0

|ϕk(ejω)|2 (19)

where {ϕk(z)} is such that

{Ψ(z)ϕ0(z), · · · ,Ψ(z)ϕn−1(z)}

is an orthonormal set of functions satisfying



Xn , Span {Ψ(z)ϕ0(z), · · · ,Ψ(z)ϕn−1(z)}

= Span

{
Ψ(z)

zn−1

A(z)
, · · · ,Ψ(z)

1

A(z)

}
. (20)

Proof: Note that as a simple consequence of the definition
(8)

1

2π

π∫

−π

Ψ(ejω)

A(ejω)
Λ?

n(ejω)T−1

n

(
Φu

|A|2

)
Λn(ejλ)×

κ2
Ψ(ejλ)Ψ(ejλ)

A(ejλ)A(ejλ)
Λ?

n(ejλ) dλ =
Ψ(ejω)

A(ejω)
Λ?

n(ejω).

Therefore, the reproducing kernel Kn(λ, ω) for the space
Xn defined in (20) is given by the following quadratic
form:

Kn(λ, ω) = κ2
Ψ(ejλ)Ψ(ejω)

A(ejλ)A(ejω)
×

Λ?(ejω)T−1

n

(
Φu

|A|2

)
Λ(ejλ). (21)

However, as established in (17), if the set

{Ψ(z)ϕ0(z), · · · ,Ψ(z)ϕn−1(z)}

is an orthonormal basis for Xn then

Kn(λ, ω)=

n−1∑

k=0

Ψ(ejλ)ϕk(ejλ)Ψ(ejω)ϕk(ejω)

=Ψ(ejλ)Ψ(ejω)

n−1∑

k=0

ϕk(ejλ)ϕk(ejω). (22)

Equating (22) with (21) when λ = ω then gives (19).

On account of (18), this result immediately gives the
following exact (in n) formulation for variance error

lim
N→∞

N · Var
{
G(ejω , θ̂N )

}
=
σ2

κ2

n−1∑

k=0

|ϕk(ejω)|2 (23)

which implies the following error quantification, which is
not asymptotic in model order n:

Var
{
G(ejω , θ̂N )

}
≈

1

N
·
σ2

κ2

n−1∑

k=0

|ϕk(ejω)|2. (24)

Of course, for this to produce an explicit quantification
it is necessary to compute the basis {Ψ(z)ϕk(z)} for the
space Xn defined in (20). The following examples will
demonstrate how this may be achieved analytically.

5. FIRST ORDER EXAMPLE

In order to illustrate the preceding ideas, consider the
simplest and lowest order example possible in which the
observed data is obtained from the first order system

yt =

(
1 − ξ0
q − ξ0

)
ut + et

where the spectral factor Ψ(z) of Φu is of the form

Ψ(z) =
z − β

z − α
.

Then an elementary calculation shows that
∥∥∥∥Ψ(z)

1

(z − ξ0)

∥∥∥∥
2

=
(1 + αξ0)(1 + β2) − 2β(α+ ξ0)

(1 − α2)(1 − αξ0)(1 − |ξ0|2)

and hence the unit norm version Ψ(z)ϕ0(z) of Ψ(z)(z −
ξ0)

−1 is

Ψ(z)ϕ0(z) =

[
(1 − α2)(1 − αξ0)

(1 + αξ0)(1 + β2) − 2β(α+ ξ0)

]
×

Ψ(z)
1

(z − ξ0)
.

Therefore, according to (23)

lim
N→∞

Var{G(ejω , θ̂n
N )} =

σ2

κ2
·

(1 − α2)(1 − |ξ0|
2)(1 − αξ0)

(1 + αξ0)(1 + β2) − 2β(α+ ξ0)
×

1

|ejω − ξ0|2
. (25)

For the case of α = 0.5, β = 0, ξ0 = 0.9, κ = 1,
σ2 = 1e−4 the results of using the ensuing quantification

Var{G(ejω, θ̂n
N )} ≈

σ2

Nκ2

(1 − α2)(1 − |ξ0|
2)(1 − αξ0)

(1 + αξ0)(1 + β2) − 2β(α+ ξ0)

1

|ejω − ξ0|2
. (26)

are shown in figure 1. Note that the expression (26) is (es-
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Fig. 1. Variability of Fixed Denominator Estimate - First
Order Example. True variability vs. theoretically de-
rived approximations. Solid line is Monte–Carlo es-
timate of true variability, dashed line is quantifica-
tion (26), dash-dot line is asymptotic-based approxi-
mation (12).

sentially) exact, which provides one example validating
the claim of this paper that it is possible to derive accurate
variance error quantifications that apply for arbitrary low
model order.

Here, and in what follows, the true variability is estimated
via the sample average over 10000 different realisations
of input and measurement noise, and is illustrated as
a solid line. The exact quantification, such as given by
(26) is shown as a dashed line, and the well known
approximation (12) is shown as a dash-dot line.



6. SECOND ORDER EXAMPLE

Suppose we increase the model complexity in the previ-
ous example to that of

G(q) =
(1 − ξ0)(1 − ξ1)

(q − ξ0)(q − ξ1)
.

In order to compute the asymptotic variance associated
with this model structure, it is necessary to compute the
orthonormal basis {Ψϕ0,Ψϕ1} that spans the same space
as {Ψ(z)(z − ξ0)

−1,Ψ(z)(z − ξ1)
−1}.

In fact, this is quite difficult, primarily because of the
restriction that all elements in this space have the same
zeroes as Ψ(z). Nevertheless it can be achieved via the
well known Gramm–Schmidt procedure. Specifically, we
have already established that

Ψ(z)ϕ0(z) =

[
(1 − α2)(1 − αξ0)

(1 + αξ0)(1 + β2) − 2β(α+ ξ0)

]
×

Ψ(z)
1

(z − ξ0)

is of unit norm, and hence a basis element f(z) that is or-
thonormal to Ψ(z)ϕ0(z) and also such that Span{Ψ(z)ϕ0, f} =
Span{Ψ(z)(z − ξ0)

−1,Ψ(z − ξ1)
−1} is given by

f(z)=Ψ(z)
1

(z − ξ1)
−

〈
Ψ(z)

1

(z − ξ1)
, ϕ0Ψ

〉
Ψ(z)ϕ0(z).

While this looks innocent enough, it evaluates to

f(z) =
(z − β)(γz + δ)

(z − ξ0)(z − ξ1)(z − α)

where

γ , −
(|ξ0|

2 − 1)(β − α)(αβ − 1)

[(1 + αξ0)(1 + β2) − 2β(α+ ξ0)](αξ1 − 1)
− ξ0,

δ , 1 +
(|ξ0|

2 − 1)(β − α)(αβ − 1)ξ1
[(1 + αξ0)(1 + β2) − 2β(α+ ξ0)](αξ1 − 1)

(27)

and hence,

‖f‖2 =
(ξ0 − β)(ξ0γ + δ)(1 − βξ0)(γ + δξ0)

(ξ0 − ξ1)(ξ0 − α)(1 − ξ2
0
)(1 − ξ0ξ1)(1 − αξ0)

+

(ξ1 − β)(ξ1γ + δ)(1 − βξ1)(γ + δξ1)

(ξ1 − ξ0)(ξ1 − α)(1 − ξ2
1
)(1 − ξ0ξ1)(1 − αξ1)

+

(α− β)(αγ + δ)(1 − βα)(γ + δα)

(α− ξ0)(α− ξ1)(1 − ξ0α)(1 − ξ1α)(1 − α2)
.

This is surprisingly complicated! Furthermore, it only
applies for the case when all of ξ0, ξ1 andα are real valued
and distinct. Nevertheless, with the definitions

K0 ,
(1 − α2)(1 − αξ0)(1 − |ξ0|

2)

(1 + αξ0)(1 + β2) − 2β(α+ ξ0)
,K1 ,

1

‖f‖2
(28)

it permits the computation in this situation for the second
order case of

Var{G(ejω , θ̂n
N )} ≈

σ2

Nκ2
·

[
K0

|ejω − ξ0|2
+

K1|γe
jω + δ|2

|ejω − ξ0|2|ejω − ξ1|2

]
(29)

The performance of this quantification, for the same ex-
periment conditions as for the first order case and with
ξ1 = 0.8, is shown in figure 2, and again it is seen to be
essentially exact.
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Fig. 2. Variability of Fixed Denominator Estimate: True
variability vs. theoretically derived approximations.
Solid line is Monte–Carlo estimate of true variabil-
ity, dashed line is approximation (29), dash-dot line
is asymptotic-based approximation (12)

7. COMPARISON WITH OTHER APPROACHES

The recent paper (Xie and Ljung 2000) has also tackled
this problem of providing variance error quantification
that is exact for finite model order. In that work, a com-
pletely different analysis approach is taken. Furthermore,
some specific assumptions are made there that are dif-
ferent to those of this paper. Specifically, in (Xie and
Ljung 2000) it is required that

(1) The spectral factor Ψ(z) is strictly all-pole (ie. {ut}
is a strictly auto-regressive time series);

(2) The model order chosen must be greater than or
equal to the order n of the underlying dynamics plus
the order ν of the spectral factor Ψ(z);

(3) In the model structure (1), all fixed poles ξk for
n < k ≤ n+ ν are set to zero.

With these conditions in mind, the quantification pro-
posed in (Xie and Ljung 2000) is

lim
N→∞

NVar
{
G(ejω , θ̂N )

}
=

σ2

Φu(ω)

(
n−1∑

k=0

1 − |ξk|
2

|ejω − ξk|2
+

ν−1∑

k=0

1 − |αk|
2

|ejω − αk|2

)
. (30)

Clearly, it is important to reconcile this expression with
that derived here. For this purpose, consider the first order
example of §5 in which case, since Ψ(z) is also first order
in that example, to satisfy the above requirements of (Xie
and Ljung 2000) a second order model of the form

G(q, θ) =
θ0 + θ1q

q(q − ξ0)



needs to be employed. In this case, substituting ξ1 = 0,
β = 0 into the analysis of §6 leads to a quantification of

Var
{
G(ejω , θ̂N )

}
≈

σ2

Nκ2
·
K0 +K1|γe

jω − δ|2

|ejω − ξ0|2
(31)

with γ, δ,K0 and K1 given by (27), (28). On the other
hand, according to (30), the analysis of (Xie and Ljung
2000) gives a quantification of:

Var
{
G(ejω , θ̂N )

}
≈

σ2

Nκ2

(1−|ξ0|
2)|ejω−α|2+(1−|α|2)|ejω−ξ0|

2

|ejω − ξ0|2
(32)

The performance of both these quantifications for the case
of ξ0 = 0.9, α = 0.5 is shown in figure 3. Clearly, the
quantification (31) seems to be essentially exact, and is
also identical to that of (32) derived in (Xie and Ljung
2000), so that for the scenario where (32) applies, the
results of this paper are consistent with it.
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ond Order Case. True variability vs. theoretically
derived approximations. Solid line is Monte–Carlo
estimate of true variability, dashed line is approxi-
mation (31), dash-dot line is Xie–Ljung quantifica-
tion (32)

8. CONCLUSIONS

The good news presented here is that in cases of rational
input spectral density, it is possible to obtain variance
quantifications that apply for arbitrarily low model order.
The bad news is that the analytical manipulations required
to compute the necessary orthonormal basis lead to very
complicated expressions; this happens because some ze-
roes as well as all the poles are constrained in the required
orthonormal spanning elements. This implies that some
sort of numerical procedure may need to be developed to
compute these quantities.

This work is related to work by other authors, but there
are important differences. In particular, the results here are
derived via new reproducing kernel techniques that avoid
the need for the detailed residue-based computations em-
ployed in (Xie and Ljung 2000). This approach allows for
the inclusion of more general classes of input spectra and
also avoids the requirement of model order being larger

than the underlying true dynamics. However, because of
this generality the quantifications here are more compli-
cated than those of (Xie and Ljung 2000).
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