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Abstract: In this work, we present a Model Predictive Controller (MPC) based on
Linear Matrix Inequalities (LMI’s). As in the standard MPC algorithms, at each
(sampling) time, a convex optimization problem is solved to compute the control
law. The optimization involves constraints written as LMI’s, including those normally
associated to MPC problems, such as input and output limits. Even though a state
space representation is used, only the measurable output and some statistic properties
of the not measurable states are used to determine the controller, hence it is an output
feedback control design method. Stability of the closed loop system is demonstrated.
The design technic is illustrated with a numerical example.
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1. INTRODUCTION

MPC is the most popular industrial MIMO
control strategy (Camacho and Bordons, 1995).
Among the reasons for the popularity we may
mention that all real systems are subjected to
physical constraints, such as actuator’s opera-
tion limits, and they may be explicitly consid-
ered, in the MPC formulation. It is mainly, a
control technic for systems with slow dynamics,
even though this drawback is rapidly changing
(Maciejowsky, 2002).

In the MPC scheme, the control law is obtained
from an optimization problem whose objective
function weights the control efforts and the de-
viations from the set point. The optimization
problem normally includes constraints on the in-
put (normally hard constraints), output and state
(usually soft constraints). The optimization is per-
formed over a (prediction) horizon which is con-
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tinuously moved forward in time, since only the
first control law is applied (out of those calculated
over the horizon) to the system (R. de Keyser and
Dumortier, 1988; Clarke and Mohtadi, 1989).

The MPC was introduced in the 70’s (J. Richalet
and Papon, 1978), and ever since much research
have been done in the area to assure, among
other, stability and feasibility of the problem
(Rawlings and Muske, 1993), (D.W. Clarke and
Scattolini, 1991), (Clarke and Scattolini, 1991).
MPC is a methodology that, working always in
the time domain, lets the operator handle easily,
physical performance requirements, such as upper
and lower bounds on the process variables, and
tuning of the closed loop. At the same time, very
little knowledge of the theory involved is required.
Being these, maybe the reason for its industrial
use.

In this work, an extension to the output feedback
case, of the methodology proposed in (M. Kothare
and Morari, 1996) is featured. Here we con-



sider the constrained case —input and output re-
strictions are included explicitly in the problem
formulation—. To assure stability, and infinite hori-
zon is considered in the objective —quadratic—
function. The optimization problem is formulated
in terms of LMI’s. There exist already dedicated
powerful algorithms that allow to obtain a solu-
tion in polynomial time, many times comparable
to those necessary to get an analytical solution
of a similar problem (S. Boyd and Balakrish-
nan, 1994). It is important to keep in mind that
an “on line” and on time solution is fundamental
to MPC.

2. PROBLEM STATEMENT

Consider the discrete linear time invariant system
represented by:

z(k+1) = Az(k) + Bu(k) (1)
y(k) = Cu(k)

where z(k) € IR", u(k) € R™ and y(k) € IRY are
respectively, the state, input and output of the
system. A € R*", B € R"™ and C € RY*"
are constant matrices.

We want to find, at each sampling time k, a
control law in the MPC framework, that stabilizes
1, with the following representation (dynamic
controller):

z.(k+1) = Acxz.(k) + B.y(k) @)
u(k) = Cexc(k)

where z.(k) € IR" and A.,B.,C. are matrices
of appropriate dimensions. The problem reduces,
for each sampling time, to determine the matrices
A, B, C., so that the closed loop system is stable.

The closed loop system (1 and 2) may be repre-
sented by:

#(k+1) = Az(k) + Bu(k)
u(k) = Kiz(k) (3)
y(k) = Ci(k)
where
A A 0] 5 [B
A= , B= ,
sl o-f2]
K=[0cC.], C[Co],
and
(k) = [j((’%] € R (5)

As mentioned above, we consider an infinite hori-
zon objective function to assure stability. In terms

of the variables of the closed loop system, the
function is given by:

oo

Joo = Y _{@(k+ k)" Q&(k + i|k)+ ©)
=0

u(k +i|k)T Ru(k +1i)k)}

where
a=195]. )

Q > 0, R > 0 and #(k + i|k) represents the
prediction of & at instant k + i, given Z(k).
Evidently, &(k|k) = &(k).

Let us introduce the quadratic function:

V(@(k|k)) = 2(k|k)T Pi(k|k), P> 0. (8)

If we have that Z(oolk) = 0 then V (Z(oolk)) = 0.

Let us suppose for the moment, that for any
instant k£ and ¢ > 0, the following condition is
satisfied,

V(@(k+i+1]k) - V(@(k +ilk)) <
—{&(k +14|k) T Qz(k + i|k)+ (9)
u(k +i|k)? Ru(k +1i)k)}

If we sum inequality 9 from ¢ = 0 up to i = oo
with Z(oolk) = 0, we obtain:

—V(@(k|k)) < =Joo(k), (10)

that is, 8 is an upper bound for the objective
function 6. The algorithm proposed, much as
in (M. Kothare and Morari, 1996), is that of
minimizing 8 subject to conditions that assure 9,
at each sampling time.

Even if not all states are measurable, some are. For
the rest, even if unknown, some statistics must
be available in order to define its condition in
probabilistic terms.

It is possible then to partition the state vector
z(k) as:

a(k) = [;( )] €R" (11)

where z,,(k) € IRP represents the measurable
(known) states and z,(k) € IR" P the non mea-
surable states, p < ¢. The unknown states will
be characterized by probabilistic parameters such
as probability density, mean (E < =z, >) and
correlation matrix (E < z,zl >).

As mentioned, all real processes have constraints
in their variables, those restrictions may be in-
cluded in the algorithm as “sufficient” conditions



expressed as LMI’s. Input (u(k)) constraints nor-
mally represent physical limits (such as valve sat-
uration, etc.) They are usually considered “hard”
constraints since they have to be satisfied. We
will consider this constraint through the euclidean
norm, given by:

[[u(k + i|k)||2 < Umax, @ >0.

Output constraints are less restrictive, since they
normally represent performance requirements. We
will consider them, similarly, through the eu-
clidean norm, given in this case by:

ly(k +ilk)ll2 < Ymax 7> 1.

Vector y(k + i|k), represents system’s predicted
output at time k + ¢, based on the output at time
k, y(k). The output constraints are imposed on
future values (i > 1), since it does not make any
sense to apply it to the actual value (i = 0).

3. MAIN RESULT

The following theorem gives conditions for the
existence of a stabilizing controller:

Theorem 1. Given the matrix ® € IR*" and the
known limit vectors ymax, and max, sSystem 1 is
stabilized by a controller of the form 2 if there
exist matrices symmetric positive definite X, Y €
IR", and matrices F € IR**™, L € IRY" and
Z € IR"*", solutions of the following optimization
problem:

max y ™ (12)
subject to
Y I 1
[I X] -y ® >0 (13)
YIT Z 0 0
*x XAA O 0
* x II Q 0 0
x x x X LT XQ1/2 >0 (14)
x % % x R! 0
* % % k% I
Y Mol 0 L
* Y I|>0 (15)
* * X
Y I ATcT

X (CAX +coBL)T | >0,  (16)
0 mand

* %

where ' =YA+FC, A=AX+BL II=Y — (@
and Q =1 - QX.

Remark 2. For simplicity and being all symmetric
matrices, in must of the cases only the upper
triangular terms are shown. The % accounts for
the other elements.

Proof: Since 8 is an upper bound for the objective
function 6, we may try to minimize such bound by
solving the following problem:

min vy (17)

subject to

2(k|k)T Pi(k|k) < 7, (18)

using the Schur complement, inequality 18 maybe
written as:

VI d(klk)”
Lot P ] >0 (19
which, by using the Schur complement, is equiva-
lent to:

v La(k|k)z (k)T < P (20)

Since not all states are measurable, we have to
recourse to the knowledge we have from them, If
it is of statistical nature, we take the expected
value of 20, considering 5 and 11, to obtain:

Pt —yte >0 (21)
where
E(a,a?) Ela,)el, B(e,)a!
o = * Tl zaal | (22)
* * Tzt

Let us partition matrices P~! and P in the form,

X U Y V
-1 _ A~ M = A
and define the matrix:
Y I
=[5, o

Without loss of generality, we may suppose that
matrix V' is a non singular matrix (C. Scherer and
Chilali, 1997), Hence T is also regular.

By Schur complement, 21 is equivalent to:

TP T — 4719 >0 (25)

from where we obtain 13.
To obtain 14, we replace 1 and 8 in 9 to obtain:

(A+ BK)"P(A+ BK) — P+

. 2
QO+ KTRK <. (26)



which readily shows that, if inequality 14 is satis-
fied, stability is assured.

By Schur’s complement, 26 is equivalent to:
pP~t (A+BK)P™! 0
x P'—_p7lQp~t p'KT
* * R!

> 0.(27)

Premultiplying 27 by TQT and postmultiplying by
T5, where:

we obtain:
TTPp=T ¥ 0
* T717TPKT | >0. (29)
* * R1

where ¥ = T7(A + BK)P™'T and T =
TTP=T — TTP-1QP~'T.

Replacing 4, 23 and 24 in 29 and by defining;:

F =VB,
L=cUut (30)
Z =YAX + FCX +YBL+VAU"Y
we obtain:
YIT Z 0
* X A A 0
x x 11 Q 0 >0 (31)
« % x X —XQX LT
* ok % * R

from which 14 is obtained by using Schur’s com-

plement on the term (4,4) -X — XQX-. Now, we

recall that min+y is equivalent to max~y~!.

Regarding the input and output constraints, let us
now define matrices 77 and 73 that will be used

later.
10 TO
Tl_[OT], Ts_[(”]. (32)

We remark that if conditions 9 and 13 are satisfied
then:

2k+ilk)TPi(k+ilk) <y, i>1. (33)

that is, the ellipsoid:
E ={2|2TPz < v}

is an invariant ellipsoid for the predicted values of
the states.

Then we may, at instant &, impose the following
euclidean constraint to all future control (even if
we will only use the next one):

[lu(k +i|k)|]2 < Umax, >0, (34)

then it follows,

. 2 KA . 2
magluth + G = e Kotk + )
max | 23 (33)

= Amax (WY2KTKW1/?),

IN

where W~! = 4~!P. From 35, by using Schur’s
complement, we can write:
[u2 I KW

west B | >0 30

or equivalently:

-1 2 —1
[’y Upax ] KP } (37)

p gt p!
Replacing 4, 23 and 24 in 37 and by using defini-
tions 30 we obtain 15.

Regarding the output, and again using the eu-
clidean norm, we want to assure ||y(k + i|k)|]2 <
Ymax, ¢ > 1. We have that:
. 2
i II?(k +ilk)llz =
max [|C(A + BK)#(k + k)3, >0
Z_
< max ||C(A + BE)z|3,= (38)

Amax (WY (A + BK)'CTC(A + BK)W/?)

then [ly(k +i[k)[|3 < yhax @ > 1if:

p! PY(A+ BK)TCT
S S A PXEY)
C(A+ BK)P ST |
premultiplying 39 by T (defined in 32) and
postmultiplying by T35 and by using 4, 23, 24, 30
in the resulting inequality, we obtain 16.

3.1 Controller construction

Once a solution to (12 - 16 is obtained, a con-
troller might be readily built by assuming any
regular matrix U (on which no restraint has been
imposed, other than regularity (C. Scherer and
Chilali, 1997)) and the controller is given by:

« V=(I-YX)UT)?
e C.=L{UT)!
e B.=VIF

Ac=V-1ZzWwnh)™!

3.2 Peak bound constraints

In theorem 1 we have restrictions on the in-
put and output variables through the euclidean
norm. Other time domain specifications may be



included. For instance, peak bounds on each com-
ponent of the control variable, may be accounted
for by:

luj(k + k)| < Ujmax 120, j=1,2,...,m

Now,
e u; () = max | (Ka(k + i),
< maX|(KZ)]|2
< ||(KW1/2)]||§,
= (KWKT)j;
Thus, the existence of a matrix S such that:
[IfT WKl} >0, (40)

with Sj; < 5 @ > 0, § = 1,2,
guarantees that |uj(k + i|k)] < Ujmax, for all
predicted values and all entries (i, j).

Premultiplication of 40 by 7} and postmultiplica-
tion by T}, will lead to a LMI in the same variables
as in theorem 1.

3.3 Alternatives to handle unmeasured states

Condition 13 arises from some statistical knowl-
edge of the unmeasurable states. Some times,
other information is also available, such as max-
ima and minima values of such states. In such
cases condition 13 may be simply replace by:

AT
Iz .
|:QA72 P—1:| > 07 (41)
where ¢ = 1,2,...,2"7P, ie., all the extreme

(possible) values of the state vector or of the
unmeasurable part of it. In fact the range of
extreme values may be reduced as long as the
system approaches steady states values.

4. NUMERICAL EXAMPLE

Next, we present a numerical example to feature
the algorithm. A model taken from (M. Kothare
and Morari, 1996), slightly modified (a measur-
able output is included in the model, i.e., not all
states are available for feedback), is used. The
model is:

sk +1) = [(1)0%19]:5(16)4—[ 0
y(k) = [10] (k)

The sampling time is 0.1 s, and the state initial
condition is z(0) = z.(0) = [0.05 0]7. Also
@ = I and R = 0.00002. For the unmeasured state
we will suppose a Gaussian probability density

0.0787] u(k) (49

function with mean zero and correlation matrix
of 0.5., that is:

E<zy>=0
E < zox] > = [0.5]

First we have impose no restrictions in the in-
put/output variables obtaining the following pro-
files (the problem was solved, in each iteration,
using Matlab —including its LMI Toolbox-):
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Fig. 1. Performance profile of the LMI based
MPC. The output.
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Fig. 2. Performance profile of the LMI based
MPC. The control.

Then, we have impose upmax = 1 and ymax = 3,
obtaining the following profile for the output y
and control u of the system:

5. CONCLUSIONS

In this work an output feedback control design
method is presented for Model Predictive Con-
trollers based on Linear Matrix Inequality con-
straints. The controller assures stability of the
closed loop system. Input and output constraints
were included (as sufficient conditions) as ad-
ditional LMIs. Other performance requirements
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Fig. 3. Performance profile of the LMI based
constrained MPC. The output.
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Fig. 4. Performance profile of the LMI based
constrained MPC. The control.

normally formulated in the frequency domain such
a Hy, and Hy may equally be incorporated. Since
some of the states are not measurable, they (the
unknown states) have been characterized by some
probability properties. The unmeasured states can
also be considered as Polytopic uncertainty, such
an approach is also featured.
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