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Abstract: The regulation of end–effector pose of manipulators is addressed in this paper.
Regarding nonredundant manipulators, we present an extension of transpose Jacobian–based
regulators obtained by energy shaping, where orientation is represented by unit quaternion.
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1. INTRODUCTION

Controllers based on transpose Jacobian offer an at-
tractive approach to robot control in task space. These
controllers attempt to drive the robot end-effector pos-
ture to a specified constant desired position and orien-
tation without solving neither the inverse kinematics
nor computing the robot inverse Jacobian.

A number of analysis and extensions of the trans-
pose Jacobian control scheme in Cartesian space have
been reported in the literature (Takegaki and Arimoto,
1981; Kelly and Coello, 1999; Kelly, 1999). Transpose
Jacobian–based regulators have also been proposed
in (Masutani et al., 1989; Koditscheck, 1991) for the
case when the end–effector position and orientation is
defined in IR3 � SO

�
3 � .

In this paper we focus in the regulation control of
pose in task space using the energy shaping tech-
nique, —originally introduced by Takegaki and Ari-
moto (Takegaki and Arimoto, 1981)— and a non mini-
mal representation of orientation —the so-called Euler

1 Work partially supported by CONACyT grant 32613-A and
CYTED.

parameters or unit quaternion—. The whole analysis
has been done regarding nonredundant manipulators.

2. ROBOT MODEL AND REGULATION GOAL

The dynamics of a serial–chain n-link robot mani-
pulator can be written in joint space as (Spong and
Vidyasagar, 1989):

M
�
q � q̈ � C

�
q � q̇ � q̇ � g

�
q ��� τ (1)

where q is the n � 1 vector of joint displacements, q̇ is
the n � 1 vector of joint velocities, τ is the n � 1 vector
of applied torque inputs, M

�
q � is the n � n symmetric

positive definite manipulator inertia matrix, C
�
q � q̇ � q̇

is the n � 1 vector of centripetal and Coriolis torques
and g

�
q � is the n � 1 vector of gravitational torques.

The manipulator output considered in this paper is
the pose of the end–effector frame with respect to
the robot base frame. The pose of the end–effector is
characterized by its position vector p � IR3, and its
orientation in terms of the rotation matrix R � SO

�
3 � .

Both position and orientation of the end–effector are
function of the joint displacements, i.e., p

�
q � , R

�
q � .
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Given a constant desired output pose pd � IR3 and
Rd � SO

�
3 � , the regulation aim is to ensure

lim
t � ∞

p
�
t � � pd � (2)

lim
t � ∞

R
�
t � � Rd � (3)

Rotation matrices R � SO
�
3 � have associated the so–

called Euler parameter or unit quaternions
��� η εT � T

with η � IR and ε � IR3 given by (Sciavicco and
Siciliano, 2000)

η � 1
2

�
r11 � r22 � r33 � 1 � (4)

ε � 1
2

��
sign

�
r32 	 r23 �

�
r11 	 r22 	 r33 � 1

sign
�
r13 	 r31 �

�
r22 	 r33 	 r11 � 1

sign
�
r21 	 r12 �

�
r33 	 r11 	 r22 � 1


�
� (5)

where ri j are the entries of matrix R, and convention-
ally sign

�
x ��� 1 for x � 0 and sign

�
x ��� 0 for x 
 0.

In this way, the rotation matrix of the end–effector
R
�
t � and the desired rotation matrix Rd have associ-

ated the unit quaternions
� � η εT � T and

� � ηd εT
d
� T ,

respectively. So, the orientation part of the regulation
goal (3) can be reformulated as

lim
t � ∞ � η � t �ε

�
t ��� � � � ηd

εd � � (6)

Expressions (2) and (6) can be rewritten as

lim
t � ∞ �y � t � � 0 � (7)

where �y is the output error defined as

�y � � �pe � � (8)

with the position error vector �p � IR3 given by�p � t � � pd 	 p
�
q
�
t � � � (9)

and for the orientation error vector e � IR3, let us
consider (Yuan, 1988)

e � η
�
q � εd 	 ηdε

�
q � � S

�
ε
�
q � � εd (10)

where, for a given x � IR3, the skew–symmetric matrix
S
�
x � is defined by

S
�
x � �

��
0 	 x3 x2
x3 0 	 x1	 x2 x1 0


� � (11)

Such a definition of the orientation error e was first
introduced explicitly by Yuan (Yuan, 1988) and then
considered by several authors (Lin, 1995; Lizarralde
and Wen, 1996; Caccavale et al., 1999; Sciavicco and

Siciliano, 2000). A detailed motivation can be found
in those references.

The linear and angular velocities of the end–effector
frame denoted by ṗ � IR3 and ω � IR3 respectively, are
given as functions of the joint position q and velocity
q̇ by (Sciavicco and Siciliano, 2000)

� ṗ
ω � � � Jp

�
q �

Jo
�
q � � q̇ � JG

�
q � q̇ � (12)

where Jp
�
q � and Jo

�
q � are 3 � n matrices, and JG

�
q � �

IR6 � n is the manipulator geometric Jacobian. Using
(12), it can be shown that the time derivative of the
orientation error (10) according with the regulation
aim is given by (Campa et al., 2001)

˙�y � � ˙�pė � � � 	 Jp
�
q � q̇� 	 1

2 ηeI 	 1
2 S
�
e � � Jo

�
q � q̇ � (13)

where ηe � ηηd � εT
d ε . This is equivalent to

˙�y � 	 Q
�
ηe � e � JG

�
q � q̇ � (14)

with

Q
�
ηe � e � � � I 0

0 1
2 ηeI � 1

2 S
�
e � � (15)

where I � IR3 � 3 is the identity matrix.

3. ENERGY SHAPING: A REVIEW

The energy shaping technique was introduced by
Takegaki and Arimoto in 1981 (Takegaki and Ari-
moto, 1981). The basic idea of this methodology is
to shape the manipulator natural potential energy in
order to satisfy a specific control goal. By design-
ing a controller that makes the closed–loop system
have a desired potential energy, and adding velocity
feedback, then we can have an asymptotically stable
system.

According to the energy shaping method (Takegaki
and Arimoto, 1981), a suitable control structure is
given by

τ � 	 ∇qUa
� �y � q � � 	 ∇q̇ � �

q̇ � � g
�
q � (16)

where Ua
� �y � q � � : IRm � IRm � IR is a continuously dif-

ferentiable positive definite function called artificial
potential energy, � �

q̇ � : IRn � IR is a continuously
differentiable dissipation function, ∇qUa

� �y � q � � stands

for the gradient with respect to q of Ua
� �y � q � � , and

∇q̇ � �
q̇ � stands for the gradient with respect to q̇ of� �

q̇ � .
For the dissipation function � �

q̇ � and for the artifi-
cial potential energy function Ua

� �y � q � � , the following
properties must be satisfied (Kelly, 1999):



P1. �y � 0 is an isolated minimum point of the artifi-
cial potential energy function Ua

� �y � .
P2. ∇q̇ � �

0 ��� 0.

P3. q̇T ∇q̇ � �
q̇ ��� 0 � q̇ �� 0.

Since �y is also a function of the joint displacement
vector q and using the chain rule, the control law (16)
can be written as

τ � 	 �
∇q�y � q ��� T

∇ �yUa
� �y � 	 ∇q̇ � �

q̇ � � g
�
q � �

(17)

Equation (17) represents a family of transpose Jacobian–
based controllers (Kelly, 1999).

Before beginning the analysis of the control law (17)
it is worth to make the following assumptions:

A1. There exist qd � IRn such that

pd � p
�
qd � �� ηd

εd � � � � η � qd �
ε
�
qd � � �

A2. The robot is nonredundant and no self–motion
exists at the desired pose pd ,

� � ηd εT
d
� T .

A robot manipulator has no self–motion if there is
not any continuous path in joint space for which
the end–effector pose does not change. Nonredundant
robots whether possess self–motion or not, it only may
happen at singular configurations (Seng et al., 1997).
Therefore, according with the assumptions A1 and
A2, that q � qd is an isolated solution of the forward
kinematics given in terms of the position vector p

�
q �

and the unit quaternion
� η � q � ε

�
q � T � T .

The closed–loop system obtained from the robot dy-
namics (1) and the control law (17) can be described
by using the state space vector � qT q̇T 	 T as

d
dt � qq̇ � �
� q̇	 M

�
q ��
 1 �∇qUa

� �y � q � � � ∇q̇ � �
q̇ � � C

�
q � q̇ � q̇ 	 �

(18)

Assuming that � qT q̇T 	 T ��� qT 0T 	 T is an equilib-
rium point of (18), it is proven in (Kelly, 1999) that
the stability of this equilibrium can be studied with
the Lyapunov function candidate:

V
�
q 	 q � q̇ � � 1

2
q̇T M

�
q � q̇ � Ua

� �y � q � �	 Ua
� �y � q � � � (19)

The first right hand side term of (19) is a globally
definite positive function with respect to q̇ because of

the positive definiteness of the inertia matrix M
�
q � .

The remaining terms define a locally positive definite
function with respect to q 	 q. Using the property
q̇T � 12 Ṁ

�
q � 	 C

�
q � q̇ � 	 q̇ � 0, the time derivative of the

Lyapunov function candidate yields

V̇
�
q 	 q � q̇ ��� 	 q̇T ∇q̇ � �

q̇ � � (20)

As a consequence of property P3, (20) is a glob-
ally negative semidefinite function; therefore, the Lya-
punov’s direct method allows the conclusion of stabil-
ity. Asymptotic stability can be proven by LaSalle’s
theorem (Vidyasagar, 1993).

4. A CLASS OF TRANSPOSE JACOBIAN
REGULATORS WITH JOINT SPACE DAMPING

It can be inferred from (14) that the gradient with
respect to q of the error function �y is given by (García,
2001)

∇q�y � q � � ∂ �y � q �
∂q

� 	 Q
�
ηe � e � JG

�
q � � (21)

Hence, equation (17) becomes

τ � JG

�
q � T Q

�
ηe � e � T ∇ �yUa

� �y � 	 ∇q̇ � �
q̇ � � g

�
q � �
(22)

By choosing the dissipation function � �
q̇ � as � �

q̇ � �
1
2 q̇T KV q̇, where KV � IRn � n is a positive definite ma-
trix, and a suitable artificial potential functions Ua

� �y � ,
from (22) we get a wide family of transpose Jacobian–
based regulators with joint space damping, using unit
quaternions to represent orientation.

4.1 Example 1

A suitable artificial potential energy function in terms
of the error function �y �
� �pT eT 	 T is given by the
quadratic form

Ua
� �y ��� 1

2 �yT Kp�y (23)

where KP � IR6 � 6 is a symmetric positive definite
matrix. Equations (22) and (23) yield the controller

τ � JG

�
q � T Q

�
ηe � e � T KP�y 	 KV q̇ � g

�
q � (24)

where KV � IRn � n is a positive definite matrix. Sub-
stituting the control law (24) into (1) we obtain the
closed–loop system

d
dt � qq̇ � �� q̇
M
�
q ��
 1 � JG

�
q � T Q

�
ηe � e � TKP�y 	 KV q̇ 	 C

�
q � q̇ � q̇�

(25)



It is possible to demonstrate that (García, 2001)�y � qd ��� 0 � (26)

and hence, � qT q̇T 	 T � � qT
d 0T 	 T is an isolated equilib-

rium point of the closed–loop system (25).

According to (19), the stability analysis is carried out
with the Lyapunov function candidate given by

V
�
qd 	 q � q̇ � � 1

2
q̇T M

�
q � q̇ � 1

2 �yT � q � KP �y � q � �
(27)

The time derivative of (27) along the trajectories of the
closed–loop equation (25) yields

V̇
�
qd 	 q � q̇ � � 	 q̇T KV q̇ � (28)

The time derivative is globally negative semidefinite
in virtue of positive definiteness of Kv; therefore, the
Lyapunov’s direct method allows the conclusion of
stability of equilibrium point � qT q̇T 	 T � � qT

d 0T 	 T .
Due to the autonomous nature of the closed–loop
system (25), LaSalle’s theorem (Vidyasagar, 1993)
can be invoked to show asymptotic stability.

In order to find the largest invariant set in a neighbor-
hood of � qT q̇T 	 T � � qT

d 0T 	 T , we need the solution of

JG

�
q � T Q

�
e
�
q � � T KP�y � q ��� 0 � (29)

It can be shown that q � qd is an isolated minimum
point of 1

2 �yT Kp�y, and therefore, its gradient with re-
spect to q, i.e., 	 JG

�
q � T Q

�
e � T KP�y must vanish only at

q � qd in a neighborhood of q � qd . These arguments
lead to claim that q � qd is the largest invariant set in
a neighborhood of this equilibrium point, and we can
conclude asymptotic stability. Therefore

lim
t � ∞

q
�
t � � qd (30)

provided that
�
qd 	 q

�
0 � � and

�
q̇
�
0 � � are sufficiently

small. As a direct consequence of assumption A1, the
control objective (7) is achieved.

It is important to remark that if assumptions A1 and
A2 are satisfied, the desired joint position q � qd is al-
lowed to be a singular configuration where the manip-
ulator geometric Jacobian JG

�
qd � is singular. In other

words, it is still possible to achieve the control objec-
tive even though the desired pose (pd and

� � ηd εT
d
� T )

corresponds to a singular robot configuration.

4.2 Example 2

Another suitable artificial potential energy function in
terms of the error function �y � � �pT eT 	 T is given by
the following function

Ua
�
yd � �y ��� 6

∑
i � 1

kpi

λi
ln � cosh

�
λi �yi � 	 (31)

where kpi
and λi are positive constants. This selection

produces the control law

τ � JG

�
q � T Q

�
ηe � e � T KP tanh

�
Λ�y � 	 KV q̇

� g
�
q � (32)

where KP � IR6 � 6, KV � IRn � n are positive definite
matrices, Λ is a diagonal matrix defined as Λ �
diag � λ1 � � � � � λ6 � � IR6 � 6 with λi positive constants;
and for a vector x � IRm, the hyperbolic tangent func-
tion is given by tanh

�
x � � � tanh

�
x1 ������� tanh

�
xm � 	 T .

Substituting the control law (32) into (1) we obtain the
closed–loop system

d
dt � qq̇ � �� q̇

M
�
q ��
 1 � JG

�
q � T QTKP tanh

�
Λ�y � 	 KV q̇ 	 C

�
q � q̇ � q̇�

(33)

According to (19), the Lyapunov function candidate
for system (33) is

V
�
qd 	 q � q̇ � � 1

2
q̇T M

�
q � q̇ �

6

∑
i � 1

kpi

λi
ln � cosh

�
λi �yi � 	 �

(34)

The time derivative of (34) along the trajectories of the
closed–loop equation (33) yields

V
�
qd 	 q � q̇ � � 	 q̇T KV q̇ � (35)

The time derivative is globally negative semidefinite
in virtue of positive definiteness of KV ; therefore, the
Lyapunov’s direct method allows the conclusion of
stability of equilibrium point � qT q̇T 	 T � � qT

d 0T 	 T .
Due to the autonomous nature of the closed–loop
system (25), LaSalle’s theorem (Vidyasagar, 1993)
can be invoked to show asymptotic stability.

In order to find the largest invariant set in a neighbor-
hood of � qT q̇T 	 T � � qT

d 0T 	 T , we need the solution of

JG

�
q � T Q

�
e
�
q � � T KP tanh

�
λ �y � q � ��� 0 � (36)

The gradient of ∑6
i � 1

kpi
λi

ln � cosh
�
λi�yi � 	 with respect to

q is 	 JG

�
q � T Q

�
e � T KP tanh

�
λ �y � and it vanishes only at

q � qd in a neighborhood of q � qd . Following similar
arguments to those of example 1, we can conclude
asymptotic stability; and therefore, the achievement of
the control objective (7).

5. EXPERIMENTAL RESULTS

The experimental evaluation of the transpose Jacobian–
based regulators was carried out on a three degrees–
of–freedom spherical wrist manufactured using direct–
drive technology (Figure 1). This wrist was built at



Fig. 1. Three degrees–of–freedom spherical wrist.

CICESE Research Center and it is equipped with joint
position sensors, motor drivers, a host computer and
software environment which provides a user–friendly
interface.

For our wrist, position and orientation cannot be spec-
ified arbitrarily, then only orientation is of concern.
This means that �y � e. In this situation the transpose
Jacobian control laws (24)and (32) reduce respectively
to

τ � Jo
�
q � T QT

o
�
ηe � e � KPo

e 	 Kvq̇ � g
�
q � � (37)

for the controller corresponding to example 1, and

τ � Jo
�
q � T QT

o
�
ηe � e � KPo

tanh
�
Λe � 	 Kvq̇ � g

�
q �

(38)

for the controller corresponding to example 2. The
orientation part of the wrist geometric Jacobian is
given by

Jo
�
q � �

��
0 	 sin

�
q1 � cos

�
q1 � sin

�
q2 �

0 cos
�
q1 � sin

�
q1 � sin

�
q2 �

1 0 cos
�
q2 �


� � (39)

Wrist singularities occur at q2 � nπ with n � 0,
�

1,
�

2,� � � Moreover, our wrist possesses self–motion at these
configurations. Therefore, the desired orientation is
not allowed to be a singular configuration. In order to
compare both controllers, the experiments were exe-
cuted under similar conditions, that is, initial configu-
ration, desired orientation, and gain matrices for both
controllers are the same. Also, the regulators include
viscous friction compensation.

The task is completely specified with the desired unit
quaternion

ηd � 0 � 5566 � εd � � 0 0 � 4226 0 � 7848 	 T � (40)

which has associated the rotation matrix

Rd �
�� 	 0 � 3802 	 0 � 8738 0 � 4705

0 � 8738 	 0 � 0230 0 � 6634	 0 � 4705 0 � 6634 0 � 8518


� � (41)

Fig. 2. Norm of orientation error
�
e
�

for the transpose
Jacobian–based regulators.

The experiments were carried out using the initial
joint configuration q

�
0 � � � 0 0 0 	 T [rad], which has

associated the initial unit quaternion η
�
0 � � 1, ε

�
0 � �� 0 0 0 	 T , with the corresponding initial rotation

matrix

R
�
0 � �

��
1 0 0
0 1 0
0 0 1


� � (42)

The gain matrices were set to

KPo
� diag � 4 � 5 � 20 � 5 � 17 � 5 � [Nm] (43)

KVo
� diag � 1 � 1 � 1 � �Nm � sec/rad 	 (44)

Λ � diag � 30 � 30 � 30 � (45)

A disappointing feature of the transpose Jacobian–
based controller (37) is the lack of a procedure for tun-
ing their gains, thus, the gain matrices were obtained
through trial and error maneuvers. Also, re–tuning
may be needed for different desired orientations. In
contrast, the regulator with hyperbolic tangent func-
tion (38) does not have those features, it allows to
specify several desired orientations without re–tuning
of the gain matrices.

Figure 2 shows the experimental results in terms of
the time history of the norm of orientation error for
the control laws (37) and (38). The regulator that
includes the hyperbolic tangent function in the control
law (38) has better performance than the controller
(37). For the former regulator the asymptotic value of
the orientation error norm is

�
e
� � 0 � 2043 whereas

for the latter regulator is
�
e
� � 5 � 3184 � 10 
 3. From

a practical viewpoint, the second regulator achieves
the control goal. In the first case the large error is
due to uncompensated Coulomb friction. The steady
state errors can be reduced if the gain matrices are
increased, however, this action can saturate the vector
of applied joint torques τ . The gain matrices were
selected considering this constraint.



6. CONCLUSIONS

Transpose Jacobian–based controllers solve the regu-
lation of manipulator pose without requiring neither
the solution of the inverse kinematics nor the com-
putation of robot inverse Jacobian. In this paper we
have presented an extension of this control scheme
using the energy shaping technique, when the orien-
tation is specified with a non minimal representation
—the so–called Euler parameters or unit quaternion—
. Asymptotic stability has also been proven with none
assumption on the Jacobian singularities. Further re-
search can include Coulomb friction compensation in
controllers were unit quaternions are used. Also, gain
tuning policies still remain open.
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