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Abstract. Residuals in fault detection and diagnosis are usually designed with directional 
or structured properties to facilitate fault isolation. With directional residuals, best 
isolation is achieved if the residual directions are orthogonal. In the presence of noise, the 
residuals are subjected to statistical testing. Testing conditions are ideal if the Fisher 
information matrix of the residuals is diagonal. In this paper, we introduce a design 
technique which, subject to certain restrictions, provides orthogonal directions and 
diagonal information matrix simultaneously. 
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1. INTRODUCTION 

 
A broad class of model-based fault detection and 
diagnosis methods is built on the concept of 
analytical redundancy (Willsky, 1976). 
Measurements of plant outputs are compared to 
predictions based on a plant model and measured 
inputs. Discrepancies are expressed as residuals 
which are ideally zero if no faults are present. These 
residuals are enhanced by algebraic manipulations to 
facilitate the isolation of faults. One of the 
enhancement techniques involves residuals which 
always point in a specific direction in response to a 
particular fault. Design techniques for directional 
residuals have been proposed by Massoumnia (1986) 
and White and Speyer (1987) in the framework of 
diagnostic observers and by Gertler nad Monajemy 
(1995) using dynamic consistency relations; see also 
(Gertler, 1998, 2000). 
 
If noise is present in the plant, the residuals are 
random and need to be subjected to statistical testing 
(Basseville and Nikiforov, 1993). The testing of 
residuals designed for arbitrary response directions 
has been discussed in (Gertler, 1998). Basseville 
(1997) has given a thorough analysis of the 
interaction between directional design and testability. 
As she has pointed out, the interaction is represented 
by the Fisher information matrix of the residual 
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vector, which characterizes the signal-to-noise ratio 
in the residual. To create ideal conditions for 
isolation and testing, the residuals should be so 
designed that the fault response directions are 
orthogonal and the information matrix is diagonal (or 
close to diagonal). 
 
Our objective in this paper is to propose a design 
technique that satisfies the above requirements. Our 
interest is in the diagnosis of additive faults in linear 
time-invariant discrete dynamic systems. Such 
systems are characterized by discrete transfer 
functions or equivalent state-space models. However, 
as shown by Basseville (1997) for the off-line 
approach to the diagnosis of dynamic systems, 
directional isolation and testing may be posed as a 
static problem. Therefore, we will investigate linear 
static systems in this paper. It will then be shown in a 
later paper that the design for dynamic systems, even 
under on-line testing conditions, can be decomposed 
so that the static results apply.  
 

2. PROBLEM STATEMENT 
 
We will use the usual assumptions that the system 
model is known completely and that the noise is 
(independent) Gaussian with zero mean and known 
covariance.  
 
Consider a linear static system 
 
y = K u + L f + M v   (1) 
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where y is a vector of m measured outputs,  u is a 
vector of k known (measured or manipulated) inputs, 
f is a vector of p unknown deterministic faults and v 
is a vector of q noises, normally distributed with zero 
mean and known covariance S. Assume at this point 
that p≤m and q=m. The first assumption is necessary 
for orthogonal response directions; the second will be 
relaxed later in the paper. 
 
A primary residual vector can be computed as 
 
e = y - K u = L f + M v   (2) 
 
then a transformed residual obtained as 
 
r = W e = W L f + W M v  (3) 
 
The primary residual is naturally directional, the 
columns of the L matrix being the response 
directions, but these columns are usually not 
orthogonal. The transformed residual is also 
directional, with the columns of  W L  as the 
response directions; with the proper choice of W, any 
desired directions can be obtained. 
 
The covariance of the primary residual is 
 
Se = E{M v v’ M’} = M S M’  (4) 
 
while the covariance of the transformed residual is 
 
 Sr = W Se W’ = W M S M’W’  (5) 
 
Consider the spectral decomposition of  Sr : 
 

Sr = Qr ΣΣΣΣr Qr’    (6) 
 
where the columns of the eigenvector matrix Qr are 
the principal directions of the distribution and the 
elements of the diagonal eigenvalue matrix ΣΣΣΣr are the 
variances in the principal directions. By the choice of 
W, both the directions and the variances can be 
manipulated. 
 
What we want to achieve is response directions 
which are orthogonal and which coincide with the 
principal directions of the covariance matrix. Simple 
residual transformation allows for the manipulation 
of the response directions or the covariance matrix 
separately, but there is interaction between the two; 
while “fixing” one, we “spoil” the other. Further 
insight may be gained  by observing the behavior, 
under the transformation, of the Fisher information 
matrix (Basseville, 1997). The Fisher information for 
the primary residuals is 
 
Fe = L’ Se

–1 L     (7) 
 
while for the transformed residuals it is 
 

 Fr = L’W’Sr
–1 W L  = L’W’(WSeW’)–1 W L   (8) 

 
For testing, a diagonal Fisher matrix would be ideal. 
If the response directions and the principal directions 
did coincide then WL=Qr∆∆∆∆, where ∆∆∆∆  is a diagonal 
matrix, and  
 

Fr = L’W’ (Qr ΣΣΣΣr Qr’)–1 W L = ∆∆∆∆ ΣΣΣΣr  ∆∆∆∆ (9) 
 
which, of course, would be diagonal. However, trying 
to achieve this by  a  square (and invertible) 
transformation would fail, since, as seen from (8), 
any such W  would cancel out, leaving Fr=Fe.  
 

3. SIMULTANEOUS DIAGONALIZATION 
 
Let us summarize the design task here. Given (2) and 
(3), with q=m, find a transformation W so that WL= 
Qr∆∆∆∆, where Qr comes from (5) and (6) and ∆∆∆∆ is any 
diagonal matrix.  Since an additional transformation 
may always diagonalize Sr , an equivalent but more 
straightforward design requirement calls for finding 
W so that  
 
Sr= W Se W’ = I     (10) 
   
and    WL=D    (11) 
 
 where D is diagonal. 
 
3.1 Full-size diagonalization 
 
First consider the case p=m. We will utilize the 
following theorem; 
 
Theorem 1 (Stark and Woods, 2001). Let P and R be 
m.m real symmetric matrices and P positive definite. 
Then there exists an m.m matrix V which achieves 
 
V’ P V = I    (12a) 
 

V’ R V = ΛΛΛΛ = Diag ( λ1 … λm )  (12b) 
 

where V and ΛΛΛΛ are the solutions of the generalized 
eigenvalue problem 
 

R vi = λ1 P vi          i = 1 … m  (13) 
 
That is, the columns of V are the eigenvectors and the 
diagonal elements of ΛΛΛΛ the eigenvalues of the matrix 
P-1R. The proof is given in (Stark and Woods, 2001).  
 
We may apply Theorem 1 to a ‘cubic’ system, where 
p=q=m, in two ways: 
 
a. P=Se, R=LL’ , W=V’. Then Sr=I, the distribution 
is spherical; the principal directions are undefined, 
any orthogonal set qualifies. But now WLL’W’=ΛΛΛΛ, 
which does not imply that the columns of  WL  are 
orthogonal. 



 

b. R=Se , P=LL’ , W=V’. Then Sr= ΛΛΛΛ, the 
distribution is elliptical, with the coordinate axes as 
principal directions. Now WLL’W’=I, implying 
L’W’WL=I, that is, the columns of WL are 
orthogonal, but in general they do not coincide with 
the principal directions. 
 
3.2 Reduced-size diagonalization 
 
We will solve the simultaneous diagonalization 
problem by transforming the m-dimensional residual 
e into a smaller dimensional space. This will also 
limit the number of faults for which optimal isolation 
is possible to p<m.  
 
Perform first a full-size diagonalization with P=Se 
and  R=LL’. This yields 
 
V’ Se V = I    (14) 
 
V’ L L’ V = ΛΛΛΛ    (15) 
 

with a V, ΛΛΛΛ pair which are m.m. Now seek the 
transformation as  
 
W = Z’V’    (16) 
 
where Z’  is p.m. Then condition (10) becomes  
 
Sr  = Z’ V’ Se V Z = I    (17) 
 
from which, with (14), the new condition is 
 
Z’ Z = I     (18) 
 
Further, condition (11) becomes 
 
T Z  = D    (19) 
 
where    T = L’V    (20) 
 
which is known at this point. The task is now to find 
Z so that (18) and (19) are satisfied.  
 
Consider now (15) and observe that RankLL’=p<m, 
thus m-p eigenvalues in ΛΛΛΛ are zero. By decomposing 
T , (15) may be written as 
 

TT’ =  T1’ [T1    T2 ] = ΛΛΛΛ1      0  (21) 
            T2’                      0        0    
 

where T1’T1 = ΛΛΛΛ1   and T2=0.  Decompose Z as 
 

Z =  Z1       p    (22) 
        Z2    m-p  
 
With this, (19) becomes 
 
T1 Z1 = D    (23) 
 
from which     

 
Z1 = T1

-1 D    (24) 
 
Let us turn now to (18). With (23) and (24), 
 
D (T1T1’)-1 D + Z2’ Z2 = I   (25) 
 
Eq. (25) needs to be solved numerically. Because of 
its symmetry, it represents p(p+1)/2 scalar 
conditions. The unknowns are the p(m-p) elements of 
Z2  and p elements of D. This leads to the condition  

 
p ≤ (2m +1) / 3   (26) 
 

The algorithm consists of the following steps: 
 

1. Full-size diagonalization (14)-(15) 
2. Computing T from (20) 
3. Solving (25) 
4. Computing Z1 from (24) 
5. Computing W from (16). 

 
The critical step is the numerical solution of (25). 
There may be multiple solutions, some of them 
complex. Real solutions cannot always be found and, 
at this time, no explicit existence conditions are 
known either. 
 
Note that if a solution can be found, it results in a 
perfect diagonal Fisher information matrix in the 
reduced residual space, namely 
 
Fr = D2     (27) 
 
3.3 Diagonalization without full-rank noise 
 
Up to this point, the diagonalization algorithm has 
required that the rank of noise be equal to the number 
of outputs, i.e. q=m. According to Theorem (12a), Se 
is also required to have full rank. These conditions 
are actually the same. We will now relax this 
restriction. 
 
The idea is that, since the rank of the noise is less 
than the number of the outputs, we can divide the 
residual space into two subspaces: one containing the 
noises and a subset of faults, the other noise free. A 
similar approach was outlined in (Levy et al, 1996). 
 
Divide fault vector f into two vectors:  
 
f =  f1    p1    (28) 
       f2    p2 
 
where p1 + p2= p and  
 
p2  = m-q     (29) 
 
Now let   
 
r1 = W1 e     (30) 
 



be a q<m dimensional residual, responding to the q 
noises and the p1  faults in f1  but decoupled  from  f2. 
Let  
 
r2 = W2 e     (31) 
 
be a m-q dimensional residual that is decoupled from 
the noise (but responds to all faults). The task is to 
find the transform matrices W1 and W2. 
 
With (2) and (28), (30) and (31) become 
 
r1 = W1 [L1 f1 +L2 f2 + Mv]  (32) 
 
r2 = W2 [L1 f1 +L2 f2 + Mv]  (33) 
 
Decoupling r1 from f2 requires that W1 be orthogonal 
to L2. The remaining design freedom may be used to 
shape the noise-response in r1; a possible choice is 
W1 M=I. Thus W1 is defined as 
 

W1 [ L2   M ] = [ 0    I ]   (34) 
  
Similarly, decoupling r2 from the noise requires that 
W2 be orthogonal to M. The remaining design 
freedom may be used to make the response of r2 to 
the faults in f2 orthogonal to one another; a possible 
choice is W2 L2=I. Thus W2 is defined as 
 
W2 [ L2   M ] = [ I    0 ]   (35) 
 
Since [L2   M] is an m.m matrix which normally has 
full rank, W1 and W2 can be solved as 
 
W1  = [0    I] [L2   M] -1   (36) 
 
W2  = [I    0] [L2   M] -1   (37) 
 
(A rank-defect in [L2   M] would indicate co-linearity 
between or within L2 and  M,  which could be taken 
into account in the design.)   
 
With (36) and (37), the new residuals become 
 
r1 = W1 L1 f1 + v    (38) 
 
r2 = W2 L1 f1 + f2    (39) 
                     
Notice that r1 is now a q dimensional residual 
subspace with q noises and p1 faults To this 
subsystem, the simultaneous diagonalization 
algorithm with full noise-rank, introduced earlier in 
this paper, may be applied, leading to a reduced 
dimension residual vector 
 
r1* = W1* r1    (40) 
 
This algorithm places a limit on p1 which, by the 
application of (26), is  
 

p1  ≤ (2q+1)/3    (41) 
 

In this way, faults contained in f1 can be detected and 
isolated from r1*. The residual r2 is noise free, which 
allows for testing with high fault sensitivity. 
However, r2 is affected by all faults while providing 
orthogonal responses only to the elements of f2.  
Therefore, the two residuals are to be tested 
sequentially: if r1* indicates no fault (that is, no fault 
in f1) then one may proceed to r2 to detect and isolate 
faults in f2. Note that the assignment of any particular 
fault into f1 or f2 is arbitrary thus noise-free testing 
may be reserved for faults which do require high 
sensitivity. 
 

4. SIMULATION EXAMPLES 
 
4.1 Reduced-size diagonalization with full-rank noise  
 
We will demonstrate the optimization algorithm with 
a linear static system with 4 outputs, 3 faults and 4 
noises. For this type of system, Z has a closed form 
solution. 
 
Assume that the fault direction matrix L and noise to 
residual transfer matrix M are as follows: 
 
L =  1     4     2 
        3     1     1 
       -2     0     7 
       -3    -2     0 
 
M =   0.5    1.5    2.0   0.0 
          1.5    2.0    0.5   0.0 
          1.5    0.0  -2.0    0.5 
         -1.5   -0.5 -2.0    0.5 
 
The noise covariance is S=I.  
 
The covariance matrix of the primary residuals is: 
 
Se  =   6.5000    4.7500   -3.2500   -5.5000 
          4.7500    6.5000    1.2500   -4.2500 
         -3.2500    1.2500    6.5000    2.0000 
         -5.5000   -4.2500    2.0000    6.7500 
 
Simultaneous diagonalization yields: 
 
V =  2.4655    0.0075    0.4022   -0.1781 
       -1.8180    0.1718   -0.2225   -0.4418 
        1.5112    0.0148   -0.1919    0.1140 
        0.4202   -0.2491    0.1750   -0.5771  
 
The solution to (25) is then obtained as 
 
Z =  -0.0369    0.0346    0.0562 
         0.8701    0.4645    0.1648 
        -0.3314    0.7990   -0.5017 
        -0.3630    0.3804    0.8473 
 



D =  1.4824   -0.0000    0.0000 
        0.0000    1.4022   -0.0000 
        0.0000    0.0000    1.1987 
 
The optimization transform matrix W is: 
 
W = Z’ V’ =  -0.1530    0.4506   -0.0206   -0.0808 
                        0.3423   -0.3289   -0.0508   -0.1809 
                       -0.2130   -0.3365    0.2802   -0.5943 
 
The new fault response matrix is W L = D  and the 
new residual covariance matrix is Sr = I. Finally, the 
Fisher Information matrix is Fr = D2, which is 
diagonal. 
 
Figure 1 shows the appearance of the primary 
residuals when, respectively, there is no fault, fault 1 
happens and fault 2 happens. Only the subspace of 
the first two residuals is shown here. Note that the 
response to fault 1 is along the [1, 3]’ direction and to 
fault 2 is along the [4, 1] direction, just as determined 
in the fault response matrix L. The distribution of the 
noise is in elliptical shape, which is not ideal for 
testing. 
 
Figure 2 shows the appearance of the optimized 
residuals when, respectively, there is no fault, fault 1 
happens and fault 2 happens. Only the subspace of 
the first two residuals is shown here. The size of each 
fault is the same as in Figure 1. Note that the 
responses to fault 1 and fault 2 are along the axis 
directions, just as determined in the fault response 
matrix W L. In addition, the distribution of the noise 
is in circular shape as well, which is ideal for testing. 
 
4. 2 Diagonalization without full-rank noise 
 
We will demonstrate the method with a 5-output, 4-
fault and 3-noise system, with noise covariance S=I.  
 
Assume that the fault direction matrix L and noise to 
residual transfer matrix M are as follows: 
 
L =   1     2     3     4 M =  1     0     3 
         3     2     1     4          1     2     0 
         4     1     5     2          0     0     0 
         5     3     2     1          3     2     1 
         3     4     1     5         -3    -1    0 
 
The transform matrices W1 and W2 are calculated as:  
 
W1 =  12.800    25.400    7.800   -38.400   -26.000 
         -15.400   -30.200   -9.400   46.200     31.000 
           -8.600   -17.800   -5.600   26.800     18.000 
 
W2  =  -2.000   -4.000   -1.000      6.000    4.000 
            5.000   10.000    3.000  -15.000  -10.000 
 

 
 

Figure 1. Primary Residual Subspace 
 
 

 
 

Figure 2. Optimized Residual Subspace 
 
 
Now in the r1 subspace, the response to fault f2 is 0 
while the noise to residual transform matrix becomes 
I. The response direction matrix for the faults in f1 
becomes 
 
W1  L1  =  -149.800    -135.000 
                  180.400     162.000 
                  103.600       94.000 
In the r2 subspace, the noise to residual transform 
matrix is 0  while the response direction matrix for 
the faults in f2 becomes  I . 
 
Apply the simultaneous diagonalization algorithm 
with full rank noise to the r1 space. 
 
The solution of  (25) is 
 
 
 



Z =   0.0013      0.0013 
        -0.6455      0.7638 
         0.7638      0.6455 
 
D =   0.6058      0.0000 
        -0.0000      0.6455 
 
The optimization transform matrix W1*  is  
 
W1* =   0.6799     0.6976    -0.2259 
             0.4409    -0.1428     0.8861 
 
The new fault response matrix is W1* W1 L1 = D and 
the new residual covariance matrix in the r1* 
subspace is Sr* = I. 
 

5. CONSLUSION 
 
We have studied the generation of directional 
residuals in the presence of noise. Methods to design 
residuals, which produce orthogonal responses to as 
many faults as the number of outputs, are well 
known. Our objective here has been to design 
residuals whose fault-response directions are not only 
orthogonal to one another but also co-linear with the 
principal directions of the noise-distribution.  
 
The solution rests on a simultaneous diagonalization 
algorithm, utilizing a generalized eigenvalue 
technique. This algorithm requires full-rank noise 
and, in its original form, does not provide orthogonal 
response directions. We have proposed an extension 
to the algorithm in which the residuals are 
transformed into a smaller dimensional space, where 
orthogonal and co-linear directions can be found for a 
reduced number of faults. In another extension, we 
have removed the requirement of full-rank noise, by 
decomposing the residual space into a noisy and a 
noise-free subspace, and decoupling the noisy 
subspace from a subset of faults. The approach 
presented here does not guarantee solution in every 
situation; when the exact problem cannot be solved, 
an approximate solution may be sought. 
 
Though we considered static linear systems, our real 
interest lies with the on-line diagnosis of linear 
discrete dynamic systems. For such systems, the 
response to a  fault f j(t) is specified as  
 
r(t|fj ) = ββββj  γ j(z) f j(t)   (42) 
 
where ββββj  is a static direction vector, and γ j(z) is a 
dynamic response which is identical for each element 
of the residual vector. While dynamic design is 
concerned with the causality and stability of the 
dynamic response, it has no influence on the static 
directional properties. Thus the dynamic directional 
design may be decomposed into a dynamic and a 

directional step, and the static results of this paper 
may be applied to the latter. This will be explored in 
more detail in forthcoming work. 
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