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Abstract: In general, neural networks cannot match nonlinear systems exactly, neuro
identiÞer has to include robust modiÞcation in order to guarantee Lyapunov stability.
In this paper input-to-state stability approach is applied to access robust training
algorithms of discrete-time neural networks. We conclude that the gradient descent
law and the backpropagation-like algorithm for the weights adjustment are stable in
an L∞ sense and robust to any bounded uncertainties.
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1. INTRODUCTION

Resent results show that neural network technique
seems to be very effective to identify a wide class
of complex nonlinear systems when we have no
complete model information. There are many re-
sults on robust identiÞcation of continuous-time
nonlinear systems(Kosmatopoulos el al., 1995),
(Suykens el al., 1999) and (Yu el al., 2001). Lya-
punov approach can be used directly to obtain ro-
bust training algorithms for continuous-time neu-
ral networks (Poznyak el al., 2001). On the other
hand, discrete-time neural networks are more con-
venient for real applications. The dynamic behav-
ior and stability of discrete-time neural networks
have been widely studied. The absolute stability
of discrete-time recurrent neural networks were
analyzed in (Feng and Michel , 1999)(Jin and
Gupta, 1999). IdentiÞcation via discrete-time neu-
ral networks has also received much attention
over the past decade. (Polycarpou and Ioannou,
1992) assumed neural networks could represent
nonlinear systems exactly, and concluded that
backpropagation-type algorithm guaranteed ex-
act convergence. (Jagannathan and Lewis, 1996)
and (Song, 1998) considered bounded model-
ing errors, robust modiÞcations were introduced
in the weight tuning algorithms. Since unmod-

eled dynamic will cause parameter drift, and
leads to instability solutions (Ioannou and Sun,
1996), robust modiÞcation terms have to be
added to assure that the adaptive learning pro-
cesses are stable, for example, σ−modiÞcation in
(Kosmatopoulos el al., 1995), modiÞed δ−rule in
(Jagannathan and Lewis, 1996) and dead-zone in
(Song, 1998).

It is well known that neuro identiÞcation is in
sense of black-box approximation. All of the un-
certainties can be considered as parts of the
black-box, i.e., unmodeled dynamics are inside of
the model, not as structure uncertainties. Hence
the commonly-used robustifying techniques are
not necessary. By using passivity theory, we suc-
cessfully proved that for continuous-time recur-
rent neural networks, gradient descent algorithms
without robust modiÞcation were stable and ro-
bust to any bounded uncertainties (Yu and Li,
2001), and for continuous-time identiÞcation they
were also robustly stable (Yu and Li, 2001a).
But for discrete-time system identiÞcation, do
discrete-time neural networks have the similar
properties? That is the motivation of this paper.
To the best of our knowledge, identiÞcation with-
out robust modiÞcation via discrete-time neural
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networks has not yet been established in the lit-
erature.

Input-to-state stability is another elegant ap-
proach to analyze stability compared with Lya-
punov method. It can lead to general conclu-
sions on the stability by using only input-state
characteristics. We will use input-to-state stability
approach to obtain learning laws without robust
modiÞcations in this paper. A simple simulation
gives the effectiveness of the proposed algorithm.

2. PRELIMINARIES

The main concern of this section is to understand
some concepts of input-to-state stability (ISS).
Consider following discrete-time nonlinear system

x(k + 1) = f [x (k) , u (k)]
y(k) = h [x (k)]

, (1)

where u (k) ∈ <m is the input vector, x (k) ∈ <n is
a state vector, and y (k) ∈ <l is the output vector.
f and h are general nonlinear smooth function
f, h ∈ C∞. Following (Jiang and Wang, 2001), let
us now recall following deÞnitions.

DeÞnition 1. A system (1) is said to be glob-
ally input-to-state stability if there exists a K-
function γ(·) (continuous and strictly increasing
γ(0) = 0) and KL -function β (·) (K-function and
lim
sk→∞

β (sk) = 0) , such that, for each u ∈ L∞
(sup {ku(k)k} <∞) and each initial state x0 ∈
Rn , it holds that°°x ¡k, x0, u (k)¢°° ≤ β ¡°°x0°° , k¢+ γ (ku (k)k)
DeÞnition 2. A smooth function V : <n → < ≥
0 is called a smooth ISS-Lyapunov function for
system (1) if: (I) there exists a K∞-function α1(·)
and α2(·) (K-function and lim

sk→∞β (sk) =∞) such
that

α1(s) ≤ V (s) ≤ α2(s), ∀s ∈ <n

(2) There exist a K∞-function α3(·) and a K-
function α4(·) such that

Vk+1 − Vk ≤ −α3(kx (k)k) + α4(ku (k)k)

for all x (k) ∈ <n, u (k) ∈ <m

Theorem 1. (Jiang and Wang, 2001) Consider a
system (1), the following are equivalent

� It is input-to-state stability (ISS).
� It is robustly stable.
� It admit a smooth ISS-Lyapunov function.

Property. If a system is input-to-state stability,
the behavior of the system should remain bounded
when its inputs are bounded.

Since f, h ∈ C∞, the state equation (1) can be
expressed in a NARMA model (Narendra and
Mukhopadhyay, 1997)

y(k + 1) = F [y (k) , y (k − 1) , · · ·
u (k) , u (k − 1) , · · ·] (2)

In this paper, we consider following nonlinear
discrete-time single-input, single-output plant

y(k) = f [y (k − 1) , y (k − 2) , · · ·
u (k − d) , u (k − d− 1) , · · ·] (3)

where f (·) is an unknown nonlinear difference
equation representing the plant dynamics, u (k)
and y (k) are measurable scalar input and output,
d is time delay. Since the nonlinear systems (3)
and (1) are equivalent, ISS approach can be ap-
plied in both of them.

3. DISCRETE-TIME NEURO
IDENTIFICATION WITHOUT ROBUST

MODIFICATION

First, we consider a single-layer neural network
which is represented as

by (k) = φ [Wkx (k)] (4)

where by (k) is the output of neural network, Wk ∈
R1×n is weight matrix, x (k) ∈ Rn×1 is a input
vector, φ(·) is a sigmoidal activation function.
The identiÞed nonlinear system (3)can be repre-
sented as

y(k) = f [x (k)] (5)

where

x (k) = [y (k − 1) , y (k − 2) , · · ·
u (k − d) , u (k − d− 1) , · · ·]

According to the Stone-Weierstrass theorem (Cybenko,
1998), this general nonlinear smooth function can
be written as

y (k) = φ [W ∗x (k)]− µ (k) (6)

whereW ∗ is optimal weight, µ (k) is the modeling
error. Since φ is bounded function and the output
of the plant is assumed bounded, µ (k) is bounded
as µ2 (k) ≤ µ, µ is an unknown positive constant.
The neuro identiÞcation error is deÞned as

e (k) = by (k)− y (k) (7)



Using Taylor series, the identiÞcation error can be
represented as

e (k) = φ [Wkx (k)]− φ [W ∗x (k)] + µ (k)
= φ

0
[Wkx (k)]fWkx (k) + ζ (k)

(8)

where fWk = Wk − W ∗, ζ (k) = ε (k) + µ (k) ,

ε (k) is second order approximation error. φ
0
is

the derivative of nonlinear activation function
φ (·) . Since φ is a sigmoidal activation function,
ε (k) is bounded as ε2 (k) ≤ ε, ε is an unknown
positive constant. The following theorem gives a
stable learning algorithm of discrete-time single-
layer neural network.

Theorem 2. If we use the single-layer neural net-
work (4) to identify nonlinear plant (5), the follow-
ing gradient updating law without robust modiÞ-
cation can make identiÞcation error e (k) bounded
(stable in an L∞ sense)

Wk+1 =Wk − ηke (k)φ
0
xT (k) (9)

where ηk =
η

1 +
°°°φ0xT (k)°°°2 , 0 < η ≤ 1

Proof. We select Lyapunov function as

Vk =
°°°fWk

°°°2 = nX
i=1

ew2i = trnfWTfWo
From the updating law (9)

fWk+1 = fWk − ηke (k)φ
0
xT (k)

∆Vk = Vk+1 − Vk
=
°°°fWk − ηke (k)φ

0
xT (k)

°°°2 − °°°fWk

°°°2
= η2ke

2 (k)
°°°φ0xT (k)°°°2 − 2ηk °°°e (k)φ0fWkx (k)

°°°
Using (8) and 0 < η ≤ 1, 0 ≤ ηk ≤ η ≤ 1,

∆Vk = η
2
ke
2 (k)

°°°φ0xT (k)°°°2
−2ηk ke (k) [e (k)− ζ (k)]k
≤ η2ke2 (k)

°°°φ0xT (k)°°°2
−2ηke2 (k) + ηke2 (k) + ηkζ2 (k)

= −ηk

1− η
°°°φ0xT (k)°°°2

1 +
°°°φ0xT (k)°°°2

 e2 (k)
+ηkζ

2 (k)
≤ −πe2 (k) + ηζ2 (k)

where

π =
η

1 + κ

·
1− κ

1 + κ

¸
> 0

κ = max
k

°°°φ0xT (k)°°°2

Since

nmin
¡ ew2i ¢ ≤ Vk ≤ nmax ¡ ew2i ¢

where n × min ¡ ew2i ¢ and n × max ¡ ew2i ¢ are K∞-
functions, and πe2 (k) is an K∞-function, ηζ2 (k)
is a K-function, so Vk admits the smooth ISS-
Lyapunov function. From Theorem 1, the iden-
tiÞcation process is ISS. The input is the approxi-
mation error ζ (k) = ε (k)+µ (k) , the state is the
identiÞcation error e (k) . Because the input ζ (k)
is bounded, the state e (k) is bounded.

Remark 1. (9) is the gradient descent algorithm,
the normalizing learning rate ηk is time-varying in
order to assure the identiÞcation process is stable.
This learning law is easier to use, because we do
not need to care about how to select a better
learning rate to assure both fast convergence and
stability. No any prior information is required. If
we select η as dead-zone function,½

η = 0 if e (k) ≤ ε+ µ
η = η0 if e (k) > ε+ µ

(9) is the same as (Song, 1998) and (Yu el
al., 2001). If a more σ−modiÞcation term or mod-
iÞed δ−rule term are added in (9), it becomes
that of (Jagannathan and Lewis, 1996) or that
of (Lewis el al., 1996). But all of them need ad-
ditional information of the modeling error. And
the identiÞcation error is enlarged by the robust
modiÞcations (Ioannou and Sun, 1996).

Remark 2. If we add a Þxed matrix A ∈ R1×m in
(4), φ is m-dimension vector function

by (k) = Aφ [Wkx (k)] , Wk ∈ Rm×n (10)

The learning law (9) becomes

Wk+1 =Wk−
η

1 +
°°°φ0ATxT (k)°°°2 e (k)φ

0
ATxT (k)

This is the same as the Equ.20 in (Polycarpou
and Ioannou, 1992), but they assumed the neural
networks (10) can match nonlinear system (5)
exactly. In our case, modeling errors µ (k) and
ε (k) are allowed.

Now, we consider multilayer neural network which
is represented as (Lewis el al., 1996)

by (k) = Vkφ [Wkx (k)] (11)

where the scalar output by (k) and vector state
x (k) ∈ Rn×1 are the same as (4), the weights
in output layer are Vk ∈ R1×m, the weights in
hidden layer are Wk ∈ Rm×n, φ is m-dimension



vector function. Similar as (6), the nonlinear plant
(5) may be expressed as

y (k) = V ∗φ [W ∗x (k)]− µ (k)

where V ∗ and W ∗ are unknown optimal values of
Vk and Wk. The nonlinear plant (5) may be also
expressed as

y (k) = V 0φ [W ∗x (k)]− δ (k) (12)

where V 0 is an initial value of Vk. In general,
kδ (k)k ≥ kµ (k)k . The identiÞcation error (7) for
multilayer neural networks is changed as

e (k) = Vkφ [Wkx (k)]− V 0φ [W ∗x (k)] + δ (k)
= Vkφ [Wkx (k)]− V 0φ [Wkx (k)]
+V 0φ [Wkx (k)]− V 0φ [W ∗x (k)] + δ (k)
= eVkφ+ V 0φ0fWkx (k) + ζ1 (k)

where eVk = Vk−V 0, ζ1 (k) = V 0ε (k)+δ (k) . The
following theorem gives a stable backpropagation-
like algorithm for discrete-time multilayer neural
network.

Theorem 3. If we use the multilayer neural net-
work (11) to identify nonlinear plant (5), the
following gradient updating law without robust
modiÞcation can make identiÞcation error e (k)
bounded

Wk+1 =Wk − ηke (k)φ0 [Wkx (k)]V
0TxT (k)

Vk+1 = Vk − ηke (k)φT [Wkx (k)]
(13)

where

ηk =
η

1 +
°°φ0V 0TxT (k)°°2 + kφk2

0 < η ≤ 1

Proof. Lyapunov function is Lk =
°°°fWk

°°°2 +°°°eVk°°°2 . From the updating law (13), we have

fWk+1 = fWk − ηke (k)φ0V 0TxT (k)eVk+1 = eVk − ηke (k)φT
Since φ0 is diagonal matrix,

∆Lk =
°°°fWk − ηke (k)φ0V 0TxT (k)

°°°2
+
°°°eVk − ηke (k)φT°°°2 − °°°fWk

°°°2 − °°°eVk°°°2
= η2ke

2 (k)
³°°φ0V 0TxT (k)°°2 + kφk2´

−2ηk ke (k)k
°°°V 0φ0fWkx (k) + eVkφ°°°

= η2ke
2 (k)

³°°φ0V 0TxT (k)°°2 + kφk2´
−2ηk ke (k) [e (k)− ζ1 (k)]k
≤ −ηke2 (k)

h
1− ηk

³°°φ0V 0TxT (k)°°2 + kφk2´i
+ηζ21 (k)
≤ −π1e2 (k) + ηζ21 (k)

where π1 =
η

1 + κ1

·
1− κ1

1 + κ1

¸
> 0, κ1 =

max
k

³°°φ0V 0TxT (k)°°2 + kφk2´ . Since
n
£
min

¡ ew2i ¢+min ¡ev2i ¢¤
≤ Lk ≤ n

£
max

¡ ew2i ¢+max ¡ev2i ¢¤
Since π1e2 (k) is an K∞-function, ηζ21 (k) is an
K-function, Lk admits the smooth ISS-Lyapunov
function. From Theorem 1, the identiÞcation pro-
cess is input-to-state stability. The input is the
approximation error ζ1 (k) = V

0ε (k) + δ (k) , the
state is the identiÞcation error e (k) . Because the
input is bounded as ε and µ, the state e (k) is
bounded.

Remark 3. The identiÞcation error will converge
to the ball radium the upper bounded of ζ1, and
it is inßuenced by the initial matrix V 0. Since V 0

does not inßuence the stability property, we may
select any value for V 0 at Þrst. The algorithm (13)
can make the identiÞcation error convergent, i.e.
Vk will make the identiÞcation error smaller than
that of V 0. V 0 may be selected by following off-
line steps:

(1) Start from any initial value for V 0.
(2) Do identiÞcation with this V 0.until k = T.
(3) If the ke (T )k < ke (0)k , let VT as the new

initial condition, i..e, V 0 = VT , repeat the
identiÞcation process, go to 2

(4) If the ke (T )k ≥ ke (0)k, stop this off-line
identiÞcation, now VT is the Þnal value for
V 0.

With this V 0 we may start on-line identiÞcation.

4. SIMULATION

We will use a very simple example to illustrate the
algorithm and the stable issue proposed in this
paper. The identiÞed plant (5) is

y(k) = −0.12y(k − 1)
+0.7y(k − 2) + u(k − 2) (14)

The single layer neural network (4) is

by (k) = 25× tanh [Wkx (k)] (15)

where

Wk = [w1,k, w2,k, w3,k]

x (k) = [y(k − 1), y(k − 2), u (k − 2)]T

The learning algorithm (9) is

Wk+1 =Wk − η [by (k)− y (k)]S (x)xT (k)
1 + 25S (x)Y (y, u)

(16)
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Fig. 2. Nonlinear system identiÞcation

where

S (x) = sech2 [Wkx (k)]

Y (y, u) =
h
y(k − 1)2 + y(k − 2)2 + u (k − 2)2

i
First we select η in (16) as η = 1. In the learning

phase we use a square ware u(k) =round(
k

30
) to

obtain the optimal weight of the neural network.
Then we Þx the weight, and put the input

u1(k) = sin(
k

30
) + cos(

k

20
) + 2 sin(

k

20
) (17)

into the plant (14) and neural network (15), the
outputs are shown in Fig.1. But if we select η = 2,
the learning process becomes unstable. Theorem
2 gives a necessary condition for stable learning,
i.e., if η ≤ 1 the learning process is stable. η > 1
may make the learning process unstable, in this
example η = 2.Now we test a nonlinear system.
We use a single-link robot model as in (Song el
al., 1999)

y(k + 2) = 2(1− T )y(k + 1)+
(2T − 1)y(k) + 10T 2 sin y(k) + u(k)

where T = 0.01 is sampleing time. We use the
control input as in (17), the learning procedure is
shown in Fig.2

5. CONCLUSION

In this paper we study nonlinear system iden-
tiÞcation by the discrete-time single layer and
multilayer neural networks. By using ISS ap-
proach, we conclude that the commonly-used
robustifying techniques, such as dead-zone and
σ−modiÞcation, are not necessary for the gra-
dient descent law and the backpropagation-like
algorithm. Further works will be done on discrete-
time recurrent neural networks and neuro control
based on ISS approach.
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