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Abstract: This paper studies identification of systems with input nonlinearities of
known structure. For input nonlinearities parameterized by one parameter, a de-
terministic approach is proposed based on the idea of separable least squares. The
identification problem is shown to be equivalent to a one-dimensional minimization
problem. The method is very effective for several common static and non-static
input nonlinearities. For a general input nonlinearity, a correlation analysis based
identification algorithm is presented which is shown to be convergent.
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1. PROBLEM STATEMENT

Hard input nonlinearities are common in engineer-
ing practice. These nonlinearities severely limit
the performance of control systems. Therefore,
robust controls are often used (Gao et al) to cancel
or reduce the effect of these harmful nonlinear-
ities. Those control designs require values of the
parameters that represent the hard nonlinearities.
Clearly, system identification constitutes a crucial
part in such control designs if the parameters are
unknown. The difficulty of identification for the
system with a hard input nonlinearity is that the
unknown parameters of the nonlinearity and the
linear system are coupled. Moreover, the output of
the hard nonlinear block may not be written as an
analytic function of the input. Surprisingly, there
is only scattered work reported in the literature on
identification of systems with hard nonlinearities
(Gu & Voros), although robust control designs
involving these hard nonlinearities become a very
active research area in recent years.

This paper studies identification of a stable SISO
discrete time linear system with a hard input
nonlinearity as shown in Figure 1, where y(k),

u(k) and v(k) are system output, input and noise
respectively. Note that the internal signal 2(k) is
not measurable.
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Figure 1: The nonlinear system
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The linear system is assumed to be stable and is
represented by the transfer function

T - T i P )

H{z) 2=z () — L —a, (1.1)
parameterized by the parameter vector
0T = (@1, -y 0n, Bry ooy Bn)- (1.2)

The nonlinear block represents a static or non-
static nonlinearity in the form of

2(k) = N (u(k), ..., u(0), a) (1.3)
for some nonlinear functions A parameterized by

the parameter vector @ € R'. Common exam-
ples of input nonlinearities are the Saturation,



Preload, Relay, Dead-zone, Hysteresis-relay and
Hysteresis nonlinearities shown in Figure 2,
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where sgn is the standard sign function.
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Figure 2: Examples of input nonlinearities.

Note that the gain of all nonlinearities in Figure 2
is assumed to be 1. This is to avoid the non-unique
parameterization problem due to the product of
the nonlinear block and the linear system. If the
gain is not 1, say a, it can be absorbed by the
linear system 2812~ " Dtopar— "D+ 4o,

2 —a1z— (D — . —a,

Our identification approach is based on the Ham-
merstein model (Bai, Billings & Stoica). There
exists a large number of works in the literature
on Hammerstein model identification. Most re-
sults require that the nonlinearity is static and
analytic, usually a polynomial (Bai, Billings &
Stoica) which is linear in the unknown param-
eter a. This is, however, not the case for hard
nonlinearities. The hard nonlinearities may not be
approximated by polynomials in stability analysis.
Moreover, expressions of these hard nonlinearities
are not linear in the unknown a. Determination
of segments itself depends on the unknown a. To
overcome these difficulties, some algorithms were
proposed (Gu & Voros). For instance, an iden-
tification algorithm for a two-segment piecewise-
linear nonlinearity was proposed in (Voros). This
algorithm is based on alternative estimation of
the parameters and some argument variables.
Though simulations illustrate some good results,
as pointed out in the paper, the convergence of the
estimates is not analyzed and can be divergent in

some applications (Stoica). Moreover, approaches
of (Gu & Voros) do not apply to the non-static
nonlinearity either. Two identification algorithms
are proposed in the paper. For nonlinearities pa-
rameterized by a single unknown constant a as
in Figure 2, a separable least squares approach
is proposed. It is shown that the identification
problem is equivalent to a one-dimensional min-
imization problem. This method makes full use
of the low dimensionality of the nonlinearity and
is found to be very effective. For a general input
nonlinearity, a correlation analysis approach is
presented. The novelty of this approach lies in the
repeated applications of inputs.

2. DETERMINISTIC APPROACH

In this section, input nonlinearities parameterized
by a lower dimensional parameter vector are con-
sidered. In particular, detailed analysis is given
for input nonlinearities parameterized by an one-
dimensional parameter a. Such nonlinearities are
common in practice and examples are shown in
Figure 2. The purpose is to develop an efficient
method making full use of their low dimensional-
ities.

2.1 Identification algorithm
Re-write the equation as
y(k) = (y(k - 1),...,y(k —n),z(k - 1),...(2.1)

,2(k —n))f + v(k),
with unknown parameters a and 8. Let

z(k) = N(u(k),...,u(0), &) (2.2)
denote the estimate of z(k) using 4. Define

e;,a(k) = y(k) — (y(k — 1), ., y(k — n), (2.3)

#(k — 1), ..2(k — n))d,
k=1,2,..., N, and the prediction error {Ljung)

Z €5, (k (2.4)
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The estimates & and § are the ones that minimize
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the objective function J can be rewritten as

J= -]1\7‘;1/ — A@)]2. (2.6)

For a given data set {y(k),u(k)}, this minimiza-
tion involves two variables @ and 6. J may be
a non-smooth function of &, but is smooth in 8.
Moreover,

_1a7

0= 335 = —AT@)Y + AT(a)A®@)8. (2.7)

Clearly, if AT(a)A(a) is invertible, the necessary
and sufficient condition for 8 to be optimal is that

6 =47 (a)A@) AT @)Y (2.8)

provided that & is optimal. Therefore, by substi-
tuting 6 in terms of & back into J, it follows that

J@) = (T - AIATA AT (29)

By substitution, for all six nonlinearities shown in
Figure 2, § is eliminated and the dimension of the
search space is reduced from (1 + 2n) to 1. This
kind of elimination of variables in optimization
literature is referred to as the separable nonlinear
least squares problems (Rube).

Now, the original identification problem has been
transformed into an one dimensional minimization
problem (2.9) for all six nonlinearities in Figure
2. Once the optimal & is obtained, the optimal §
follows from (2.8). It is important to remark that
the minimization of (2.9) is always 1-dimensional
for all six nonlinearities shown in Figure 2 inde-
pendent of the linear part which could be param-
eterized by a high dimensional vector § € R?".

The deterministic identification algorithm for sys-
tems with hard input nonlinearities parameterized
by a single parameter a is now summarized.

Separable least squares identification algo-
rithm for systems with hard input nonlin-
earities shown in Figure 2:

Step 1: Consider the system (2.1), collect the data
set {u(k),y(k)} and define Y and A(a).

Step 2: Solve (2.9) for the optimal &.
Step 3: Calculate the optimal § as in (2.8).

To illustrate the effectiveness of the proposed
approach, the algorithm is tested with all six
nonlinearities shown in Figure 2 with the following
example.

Example 1: Let the linear system be
y(k) = ony(k — 1) + azy(k — 2) + frz(k — 1)+
ﬂg.’l)(k - 2) + ’U(’C)

where 87 = [a;, a2, 1, B2] = [—0.8333,-0.1667,1,1]
which is unknown and v(k) is an ii.d. random
sequence in [-0.2,0.2]. For simulation, N = 100
and input is uniformly distributed in [—4, 4]. Now,
consider the above linear system with the Preload
nonlinearity of a = 1, Dead-zone nonlinearity of
a = 1, Saturation nonlinearity of ¢ = 1, Relay
nonlinearity of a = 1, Hysteresis-relay nonlinear-
ity of a = 1 and Hysteresis nonlinearity of a = 1,
separately. The true values of a and 8, and the
estimates & and @ are, respectively, shown in Table
1.

i a=1 | 67 =(-.83,-.17,1,1) I
Preload a=1 6T = (—.83,—.17,1.0,1.0)
Dead-Zone || 6=1 6T = (—.83,—-.17,1.0,1.0)
Saturation || a=1 6T = (~.82,-.16,1.01, .98)
Relay a=1 6T = (—.83,-.17,1.01,1.01)
Hy-relay a=1.02 | 67 =(-.83,~.16,1.0,.99)
Hysteresis || a=1 4T = (—.84,~-.16,1.0,1.0)

Table 1: True values and the estimates.

Note that only 100 data points are used to ac-
curately estimate the unknown 6 and a. This is
because the dimension of the problem is reduced
to one.

2.2 Consistency analysis and computational issues

Note that the estimates are derived from the min-
imization of J(@). There are two questions that
need to be answered: (1) how to find the global
minimum of the nonlinear optimization problem
J(@), and (2) how the estimates perform in the
noisy situation. At each N, the estimates (6, &) are
derived from the prediction error. Therefore, with
i.i.d. zero mean Gaussian noise, these estimates
are actually the Maximum Likelihood estimates
(Ljung) and are strong consistent. How to find
the global minimum of J(&) in general is a hard
question that depends on the input nonlinearities.
Recall, however, that J(&) is one dimensional for
all six input nonlinearities discussed in this paper.
Thus, after collections of the data set {y(k), u(k)},
Z(k) and consequently A(&) can be constructed
using &, and therefore, the complete picture of
J(@) with respect & can be plotted. This graph-
ical picture provides us accurate information on
where the global minimum is. Then, local search
algorithms, for instance, simplex method can be
applied in that region to find the global minimum.
In fact, the global minimum can also be obtained
directly from the plot of J(&) versus 4. Using
the data generated in Example 1, the plots of
J(a) versus a for all six nonlinearities in Figure
2 are shown in Figure 3, where in each subplot
the vertical axis is J(@) and the horizontal axis is
a. In all six figures, the neighborhoods where the
global minimum lies can be easily seen.
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Fig. 3. J(&) versus a.

Remark 2.1. To compare with the existing results
of deterministic identification algorithms for the
hard input nonlinearities, for instance in (Voros),
our method is very efficient for nonlinearities pa-
rameterize by one parameter. First, the global
minimum can always be obtained at least numeri-
cally based the plot of J(&) versus &. Secondly, the
estimates have strong consistency results and are
well behaved in noisy situations. There is no con-
sistency analysis for the estimates of (Voros) and
it is not clear how they perform in a noisy situa-
tion. Moreover, the method of (Voros) is alterna-
tive estimate and can be divergent (Stoica) though
rarely. Finally, the proposed method applies to
non-static nonlinearities. The disadvantage of the
proposed method is that it does not extend to
the case that the nonlinearity is parameterized by
a high dimensional vector due to nonlinear min-
imization of J{&). We remark that this problem
is not created by our formulation but is inherent
in nonlinear system identification. Our approach
makes full use of the low dimensionality of those
nonlinearities parameterized by a one-dimensional
parameter so that the global minimum is obtain-
able.

3. CORRELATION ANALYSIS METHOD

As discussed before, the separable least squares
method can be easily extended to the case
where the nonlinearity is parameterized by a two-
dimensional vector. However, it seems hard to
extend the method to the case where the nonlin-
earity is parameterized by a higher dimensional
a. In this section, a general input nonlinearity pa-
rameterized by some a € R! is considered and an
algorithm for identification of systems with static
hard input nonlinearities is proposed by using
correlation analysis. Throughout this section, it
is assumed that the input u(k) is at our disposal
and is a zero mean i.i.d. random sequence with

finite variance. The noise v(k) is assumed to be
independent of the input.

Recall that all signals are ergodic and the input
nonlinearity is assumed to be static, it follows that

Ev(k)u(k — j) =0, (3.1)

Exz(k—1i)u(k—j) = Ez(k)u(k+1—j) = ¢6(¢ — j)
where ¢ = Ex(k)u(k). Based on the system model,
the following equations hold for m > 2n,

Ey(k)u(k — 1) = S1Ez(k — Du(k — 1) (3.2)

Ey(k)u(k - 2) = oy Ey(k — 1)ulk — 2)+
BoEx(k — 2)u(k — 2)
Ey(k)u(k—n) = eyEy(k— Lu(k—n)+ ...+ @n1
Ey(k—n+1)-u(k —n) + BnEx(k — n)u(k —n)
Ey(k)u(k—n—-1) = oy Ey(k—1u(k—n-1)+...+
anEy(k —n)u(k —n —1)

Ey(k)u(k — 2n) = eu By(k — 1)u(k — 2n) + ...
+a,.Ey(k — n)u(k — 2n)By(k)u(k — m)
= o Ey(k—1)u(k—m)+...+ aEy(k—n)u(k—m)

Let w(i) = Ey(k)u(k — ¢), then

( w(1)
w(2)
. (03]
w(n) :
win+l) =g % 3.3
. b (33)
w(2n) :
. 4Bn
w(m)
where
0 0 P 0 1 0 0
w(1) 0 0 0o 1 0
w(n.— 1) w('n.— 2) ... 0 0 0 1
= w(n) win-1) ... w(1) o 0 0
: : . : o
w(2n —1) w(2n-2) ... w(n) o ... 0
: : . : Do 0
w(im — 1) w(m — 2) . wim—=n) 0 O [

The estimate of ; and ¢f3; can be obtained by
solving the above equation. To further find ¢ and
a, notice that ¢ = Ez(k)u(k) depends on the
distribution f of u(k) as well as the unknown g,
i.e., ¢ = q(f, a). If identification is carried out ({+
1) times with different distribution f, fo, ..., fi+1,
the ratios

o= 9(f1,0)8, _ _a(f1,0)
q(fiv1,0)B;  a(fiy1,0)’

i=1,2,..,0(34)



are numerically obtained and this provides ! equa-
tions for the unknown a € R!

ciq(fir1,a) = ¢(f1,a), i=1,2,.,01. (3.5)
All variables ¢;’s and ¢(f;,a)’s are computable
and thus, a can be solved. Several examples are
provided below.

Non-symmetric Relay nonlinearity: Consider
a non-symmetric Relay

1 u(k) > a2
.'ll(k) = { 0 —-ai1 < u(k) < a2 (36)
—1 u(k) < —a1

where a = (a1,a2)’ is two dimensional. Let f;
and f» be uniform distributions in [—b;,b1] and
[—b2, be] respectively. Let the third distribution be

0 u < —dy oru>ds

4
—— 41 <u<0
dld%-’-dzd% disu<

P S <
GB @ CSus e

f3(u) =

For d;,dy, by, by > maz(ay,as), it follows that

(2% — af — af)

q(fi,a) = v ,i=1,2 (3.8)

&id3 1 d3a? + dia}

1f3,0)= G BTGB 2B L’

From the definitions of ¢; = a%}f;ﬁl—), it follows

that
by —ec1b,
2bycads

T dydZ+dad?’

by — e1b1 ) a?
_ 2bq czdf ( %)
didZ+dad? a3
bebz —2c blb2
(- 2284 )
Hence, a = (a1,a2)’ are uniquely obtained by
solving the above equation.

Non-symmetric Preload nonlinearity: In this
case,

u(k) + ay u(k) >0
z(k)=<0 u(k) =0 . 3.9)
u(k) —ay u(k) <0
Let f; and f; be two uniform distributions in
[=b1, b1] and [—bs, b2] respectively, and
0.56(u+ b3) u= —bs
falw) = { - 0<u<b;

2bs
0 otherwise

(3.10)

where 6(t) is the 6 function. It is easily calculated
that

a(fi,a) = B + b_giljl‘_?_).

3 i i=1,2 (3.11)

(3.7)

2b3 arbs a2b3

q(fs,a) = 5t Tt

Therefore, a = (a1, a2) can be uniquely calculated

from
1, 1 a
(éasz_lu éagz_éx) (al) (3.12)
2 40 4 1 2

4(b3—bZc1)

= | 3@t |
Ei _ 2b2382
3 3

Saturation nonlinearity in Figure 2: Let f;
and f; be two the uniform distributions in
[=b:, 8], ©=1,2 with by,b; > a. It is a routine
to calculate

a,b? 1,
52 T8

T

9(fia) = i=1,2 (3.13)

and this implies, from the definition of ¢;,

\/IS(Clbg - bl)blbz l

C1 b1

(3.14)

Dead-Zone nonlinearity in Figure 2. Let f; and
f2 be two uniform distributions in [~by,b] and
[—ba, ba] respectively with by > by > a. It is easily
calculated that

q(fi,a) = 6b,-a 3 3% i=1,2(3.15)

1a3—“—bl+1b2

3 _aby | 1p2°
sza’ = + 303

1 =

This implies
(Clbl - bz)as + 3b1b2(b1 - Clb2)0+ (316)

2byba(c1b3 — b}) =
It can be shown that this equation always has
three real roots. One lies in the interval (—o0,0),
the second one in (0,b;) and the last one in
(b1, 00), provided b > by > a > 0. Since 0 < a <
by and b, is known, a can be uniquely determined.

The identification algorithm using correlation
analysis for static input nonlinearities is now sum-
marized.

Identification algorithm using correlation
analysis:

Step 1: Apply input u(k) with the distributions f;
and define

1 N
w@) = =Y ykuk—1), i=1,
Nk=l

for some large N and m > 2n.

Step 2: Construct equation (3.3). Solve the e equa-
tion and denote the solution by &; and g( fl, a)f;.

2,...,m(3.17)



Step 3: Repeat Steps 1 and 2 by applying the input
with different distributions f;, ¢ = 2,...,1 4+ 1 to
obtain g(f;,a)B;-

Step 4: Calculate ¢(f;,a) and find

o= W) _ ‘J(E“), i=2,..,0+1(3.18)
a(fi,a)B;  a(fi,a)

Denote the solution by 4. Compute q(?;,\a) using
é.

Step 5: The estimates are a, &; and

s _ a(f1,0)B;

B; —, §j=12,..,n.
q(fh a)

(3.19)

Note that w(i) = % Y, y(kyuk — 1) —
Ey(k)u(k — 1) as N = oo and therefore, the esti-
mates derived by the correlation method converge
to the true values. It is also noted that in calcu-
lating ¢; = —2ULDBi and the corresponding &,

‘I(f i1 »a)ﬁj
any j can be used. It may be beneficial to use the

q(ff::gﬂi

) 7T a(fit1,0)B;
numerical simulation example.

average & = 130 . Now, consider a
n 7=1 ’

Example 2: Consider the same linear system as
in Example 1 with the Saturation nonlinearity of
a = 1. For simulation, N = 2000, and v(k) is uni-
formly in [—0.1,0.1]. Apply two inputs uniformly
distributed in [—2, 2] and [-3, 3] respectively. The
Identification Algorithm produces following esti-
mates

8,6, 62, A1, Ba) = [1.005, —0.8390, (3.20)
—0.1555,1.09,1.08]

Remark 3.1. Comparing to the deterministic iden-
tification algorithm presented in the previous sec-
tion, the correlation method needs to estimate
the correlation between input and outputs and
therefore, a long length of data is needed. In
Example 2, the estimation results using 2000 data
points are not as good as the one by the separa-
ble least squares approach using only 100 data
points. However, the correlation method applies
to nonlinearities parameterized by some a € R!
while the separable least squares method is limited
to nonlinearities parameterized by a one or two
dimensional a.

Remark 3.2. The choices of f;’s are arbitrary and
the formula derived above are just examples. One
may pick other input distributions for identifica-
tion. Of course, formula would be different for
different distributions. It is also interesting to note
that if the nonlinearity is even, then any even
distribution f; gives rise to a zero ¢(f;, a). In this

case, non-even distributions such as f3 in the non-
symmetric Preload example can be used. Similar
discussion applies to odd nonlinearities.

4. CONCLUDING REMARKS

Two identification algorithms are proposed for
the system with hard input nonlinearities. The
first one notes the fact that a is one dimensional
and thus, transforms a higher dimensional nonlin-
ear identification problem into a one dimensional
minimization problem. The method is particularly
effective for many input nonlinearities which are
parameterized by a single parameter a. The ap-
proach also applies to nonlinearities with memory.
The second algorithm relies on repeated identifi-
cations with different random input sequences and
is convergent.

REFERENCES

E.W. Bai (1998), An optimal two-stage identifica-
tion algorithm for Hammerstein-Wiener nonlin-
ear systems, Automatica, Vol. 34, No. 3. pp.333-
338.

S.A. Billings and S.Y. Fakhouri (1978), Identi-
fication of a class of nonlinear systems using
correlation analysis, Proc. of IEE Vol. 125, No.
7. pp-691-697.

X., Gu, Y. Bao and Z. Lang (1988), A parameter
identification method for a class of discrete time
nonlinear systems, Proc. 12th IMACS World
Congress, Paris, Vol. 4, pp.627-629.

L. Ljung (1987) System Identification, Englewood
Cliffs, NJ: Prentice -Hall.

A. Ruhe and P. Wedin (1980), Algorithms for sep-
arable nonlinear least squares problems, STAM
Review, Vol. 22, pp.318-337.

P. Stoica (1981), On the convergence of an iter-
ative algorithm used for Hammerstein system
identification, IEEE Trans. on Automatic Con-
trol, Vol. 26, pp.967-969.

G. Tao and C.A. Canudas de Wit (Eds) (1997),
SPECIAL ISSUE ON ADAPTIVE SYSTEMS
WITH NON-SMOOTH NONLINEARITIES,
Int. J. Adapt. Contr. Signal Process, Vol.11,
No.1.

J. Voros (1997), Parameter identification of dis-
continuous Hammerstein systems, Automatica,
Vol. 33, No. 6, pp.1141-1146.



