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Abstract:

F undamertal limitations for error tracking/regulation are obtained for the ripple-free
robust servomedanism problem (RFRSP) for a sampled system. In studying this
problem, the robust servomechanism problem is considered for a multi-input/multi-
output sampled LTI system, using a cheap control problem formulation. Explicit
expressions are obtained for the limiting performance costs associated with error
tracking/regulation in the RSP, and application of these results is then made to
obtain explicit expressions for the limiting performance costs associated with error
tracking/regulation in the RFRSP. These limitations can be characterized completely
by the mumber and location of the non-minimum phase transmission zeros.
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1. INTRODUCTION

V arious properties of the robust servomedanism
problem have been extensively studied for con-
tinuous linear time-invarian t(LTI) systems (Davi-
son and Scherzinger, 1987; Qiu and Davison, 1993;
Seron, and Middleton, 1998; Shaked, 1980; Qiu,
and Toker, 1997; Qiu and Chen, 1998), and for
sampled LTI systems (Ben Jemaa and Davison,
1996, 1999, 2000) in recen t years. In this case,
on ignoring non-linear effects, for minimum phase
square continuous I'I'T systems, perfect asymptotic
tracking/disturbance rejection and arbitrarily good

transient response, for a specified class of reference
and disturbance signals, can be achieved (Davison
and Scherzinger, 1987). The robust servomechanism
problem for right-invertible non-minimum phase
con timous systems and non-right inwertible sys-
tems, ho wever, has fundamental performance lim-
itations for error tracking/regulation. Explicit ex-
pressions for the limiting optimal cost for right-
invertible non-minimum phase systems were ob-
tained in (Qiu and Davison, 1993; Shaked, 1980),
and it w asshown in (Qiu and Davison, 1993; Qiu
and Chen, 1998) that the robust servomechanism



tracking cost, for the case when the performance
cost is the integral of the deviation of the system
outputs, can be expressed as a function of the right-
hand plane transmission zeros of the system. Refer-
ence (Seron, and Middleton, 1998) considered non-
right-invertible systems, and expressed the limiting
tracking cost for constant set-points as a function of
the non-minimum phase zeros, and of the variation
with frequency of the plant direction.

The robust servomechanism problem (RSP) was
considered for multi-input/multi-output sampled
LTT systems using a cheap control problem formu-
lation, in (Qiu and Chen, 1998; Ben Jemaa and
Davison, 1996, 1999, 2000), and in this case it was
shown (Ben Jemaa and Davison, 1996, 1999, 2000)
that the fundamental performance limitations of the
behavior of the RSP for minimum phase sampled
systems is independent of the order of the plant
and of the infinite transmission zero structure of the
continuous plant model. In (Qiu and Chen, 1998;
Ben Jemaa and Davison, 1999, 2000), it was shown
that the fundamental performance limitations on
the behavior of the RSP for non-minimum phase
sampled systems is characterized by the number and
location of the transmission zeros of the sampled
open loop system which lie outside of the unit circle.

The ripple-free robust servomechanism problem
(RFRSP) consists of finding a robust servomech-
anism controller which achieves exact asymptotic
tracking/disturbance rejection for a linear sampled-
data system at and between the sampling in-
stants in the presence of a specified class of track-
ing/disturbance signals (Doraiswami, 1981, 1982,
1997; Emami-Naeni, 1984). A hybrid control strat-
egy is proposed in (Doraiswami, 1982) to solve the
RFRSP; it consists of a digital controller which
acts as a stabilizer and a digital servocompensator
controller to ensure that asymptotic tracking and
disturbance rejection occurs at the sampling in-
stances, along with an analog servocompensator
type controller to ensure zero asymptotic error oc-
curs between sampling instances. In this paper, the
performance limitations on the behavior of such
a RFRSP for minimum and non-minimum phase
sampled systems is considered.

2. THE ROBUST SERVOMECHANISM
PROBLEM (RSP) FOR SAMPLED LTI
SYSTEMS

The robust servomechanism problem (RSP) was
studied in (Ben Jemaa and Davison, 1996, 1999,

2000; Qiu and Chen, 1998) for multi-input/multi-
output sampled LTI systems, using a cheap con-
trol problem formulation. The following gives an
overview of some of the results obtained.

We shall initially consider the square continuous
plant modeled by

&t = Az + B(u + w) (1)
y =Cx + =Y —Yref

whereu e R,y e R,z e R", we R",neR", u
is the input, w and n are constant unmeasurable
disturbances, y is the output, y,.; € R" is a
constant set point, and e is the error in the system.

The following existence results are now obtained:

Lemma 1. (Davison, 1976) There exists a solution
to the RSP for (1) iff the following conditions are
all satisfied:

(i) (C,A,B) is stabilizable and detectable
AB
col= n+r
(iii) y is measurable.

(ii) rank

Assume now that the plant is sampled with a Zero
Order Hold (ZOH), with sampling interval A > 0, so
that the resultant sampled system is described by :

Tp41 = Az + Blug + w)
yr = Czp + 1 (2)
€k = Yk — UYref

where A := e, B := foh eA=T)Bdr, C := C, and
w, 1 are constant unmeasurable disturbances, and

Yref iS @ constant set-point tracking signal.

Lemma 2. (Goldenberg and Davison, 1974) There
exists a solution to the RSP for (2) iff the following
conditions are all satisfied:

(i) (C, A, B) is stabilizable and detectable
A-IB
c ol~ n+r

(iii) yx is measurable.

(ii) rank

The following existence result is obtained re a solu-
tion to the RSP for the sampled system (2) in (Ben
Jemaa and Davison, 1999):

Lemma 8. (Ben Jemaa and Davison, 1999) Given
the continuous system (1), assume that there exists
a solution to the RSP for (1), i.e. the conditions
of lemma 1 are all satisfied; then for almost all
h > 0, there exists a solution to the RSP for the
sampled system (2), i.e. the conditions of lemma, 2
are satisfied.



The following intermediate result is obtained in
(Ben Jemaa and Davison, 1999):

Lemma 4. (Ben Jemaa and Davison, 1999) Given
the continuous LTI non-degenerate (Davison and
Wang, 1974) system (1), then for almost all (Davi-
son and Wang, 1973) plant parameters (C, .4, B) and
almost all A > 0, the resultant sampled system
(2) has the property that (CB) is non-singular; in
particular if (C, A, B) has a non-singular interactor
matrix, then (CB) is non-singular for almost all
h > 0.

In order to find a “high performance ” digital
controller to solve the RSP for (2) in the presence
of constant disturbances w and 7, and constant set-
points y,.r, the following “cheap performance index
” is now defined:

J:hi {6116_16k—1+€(uk_uk—1)1(Uk_uk—l)} (3)

k=o

where ey, := yi, — yres is the error in the system, and
€ > 0, for the following system:

e e

e(k—1) =[01] {mke_]ﬁ’f—l

2.1 Robust Servomechanism Control Results for
Strictly Proper Non-minimum Phase Systems

Assume now that the sampled system (2) has p €
[1,n — 1] transmission zeros, and is non-minimum
phase with p € [1, p] non-minimum phase transmis-
sion zeros given by A;, i = 1,2,...,p

Theorem 1. (Ben Jemaa and Davison, 1999) Given
a sampled system (2) which has the property that
there exists a solution to the RSP and is non-
minimum phase, consider the optimal controller
which minimizes the performance index (3); then

I) If 2(0) =0, yrer # 0, 7 # 0, and w = 0, the
optimal cost J as € — 0 is given by:
—1) M(yres —m)  (5)

where M is a constant matrix with

(A +1)
\i—1)°

Jopt = h(?/ref

trace(M) _n+r—p+2

IT) Assume in (2) that (C'B) is invertible. Then

(a) if z(0) =0, yrey # 0,7 # 0, and w = 0,
the optimal cost J as € — 0 is given by:

‘]Opt = h(yref - n)IM(yref - 77) (6)
where M is a constant matrix with
p
(A +1)
+ 7
2o O

(b) if (0) = 0, Yrer = 0,7 =0, and w # 0,
the optimal cost J as € — 0 is given by:

trace(M) = 2r

Jopt = hw Mw. (8)

where M is a constant matrix given by
M = 0O 0O, where

where the vector v; is given by

o) | Nt =0 o

cito0
and wv; is normalized,i.e. ﬁ;vi = 1, and
where
cl =C
, , Aidi — 1 :
Ct =0 [ ) G (A + D).
m m ( >\z+1 vluz( + )

Remark 1. An extension of theorem 5 for the case
when C'B is not invertible is also given in (Ben
Jemaa and Davison, 1999).

3. RIPPLE-FREE ROBUST
SERVOMECHANISM PROBLEM

It is desired now to study the fundamental limita-
tions associated with solving the ripple-free robust
servomechanism problem for sampled systems. Con-
sider the square continuous plant (1). Then a hybrid
control strategy proposed in (Doraiswami, 1982) to
solve the RFRSP consists of a digital controller,
which serves as a stabilizer and a servocompen-
sator controller to ensure that asymptotic tracking
and disturbance rejection occurs at the sampling
instances, along with an analog servocompensator
type of controller to ensure that zero asymptotic
error occurs between the sampling instances. In the
case of constant tracking/constant disturbances, the
analog controller is just a simple servocompensator
modeled by



¢ =v
u=¢ (11)

where u is the input to the plant (1), and the aug-
mented continuous system (1),(11) is then modeled

yzé[§]+n (12)

AB]

where v is a new control input, and A= { 00

5 B
. Assume now

B::{H,CA:[CO]andf::{o

that (12) is sampled with a (ZOH) with sampling
interval h > 0, and let the sampled system be
described by:

Bﬁi:A{Z]+BW+Ew
m=(co] |7+ (13)

where A := et B = th =1 ABdr, and E =
foh e(h="Agqr,

The following section describes various properties
which result from augmenting (1) with the ana-
log servocompensator (11), in order to solve the
RFRSP.

3.1 Properties of the Augmented Sampled System

The number and location of any new transmission
zeros introduced, resulting from augmenting (1)
with the analog servocompensator (11) are now
characterized in this section. Initially, continuous
time systems (1), having a full rank CB matrix are
considered.

Lemma 5.
Given a continuous time system (1), assume that
the generic condition rank(CB) = r holds; then

1) the sampled system (2) has n — r transmission
zeros, and as h — 0, all of the transmission
zeros approach 1.

2) the sampled augmented system (13) has n
transmission zeros, and as h — 0,

a) n — r transmission zeros approach 1, and
b) r transmission zeros approach -1.

The following lemma shows that the transmission
zeros corresponding to the non generic case all
lie on the negative real axis for SISO systems. In
particular, given a SISO continuous time system,
the following result provides a limiting relationship
between the zeros of a continuous-time and sampled
system.

Lemma 6. (Hagander and Sternby, 1984)

Given a SISO continuous time system (1) with p
transmission zeros s;, ¢ = 1,2,...,p, consider the
sampled system (2); then, as the sampling period
h — 0:

1) p zeros of (2) approach unity asymptotically as
limy, o€, i=1,2,...,p;

2) the remaining n — 1 — p zeros of (2) approach
the zeros of the Euler polynomial &,_,(z),

where the Euler polynomials are defined by:

81(2) =1
Err1(2) =1+ kz2)&(2) + 2(1 — 2) dgdkiz)
k=1,2,... (14)

and have the property that the roots of &(z),
k=2,3,4,... are all real and negative.

The following corollary which follows directly from
lemma 8, characterizes the transmission zeros of the
SISO sampled augmented system (13).

Corollary 1. Consider the SISO continuous time
system (1) with p transmission zeros s;, @ =
1,2,...,p, and the corresponding sampled aug-
mented system (13); then, as the sampling period
h — 0:

1) p zeros of (13) approach 1 ;
2) the remaining n — p zeros of (13) approach the
zeros of the Euler polynomial &, ,41(2).

Given the sampled augmented system (13), the
following section now describes any performance
limitations associated with the performance index
(3) as e = 0.

3.2 Ripple-free Robust Servomechanism Control Results

The following existence result is now obtained:

Lemma 7.

Given the continuous system (1), assume that there
exists a solution to the RSP for (1), i.e. conditions
(i) to (iii) of lemma 1 all hold; then



a) there exists a solution to the RSP for the
continuous time system (12) and,

b) there exists hs so that for all h contained in
[0, h], there exists a solution to the RFRSP
for the sampled system (13).

The following theorem shows that the new transmis-
sion zeros introduced by the analogue compensator,
in the sampled augmented system (13) are innocent,
i.e. they do not alter the limiting optimal perfor-
mance cost obtained in (5) for the original sampled
system (2).

Theorem 2. Consider the continuous system (1),
and assume that it has a non-singular interactor
matrix and that there exists a solution to the RSP
for (1), i.e. the conditions of lemma 1 are all satis-
fied; then as h — 0, the optimal performance costs
(5), (6) associated with the sampled system (13),
coincide respectively with the optimal performance
costs (5), (6) associated with the sampled system

(2)-

Remark 2. Note that the assumptions imposed on
the continuous system (1) are all generically satis-
fied.

4. EXAMPLE

Consider the following continuous non-minimum
phase system given by:

0O 1 0 0 0 0 00
0.2 0.2 0.1 0.01 0.1 0.01 00
0O 0 0 1 0 0 00
A=l 1 01 21010 o |'BFl10]
o 0 0 0 0 1 00
1 01 0 0 —-1-01 01
(15)
~4-301000
and =10 0 0010

The transmission zeros of this system are given by:
{-0.0692, 4.1264}. If we sample this system with
h = 0.01, the resulting sampled data system is non-
minimum phase with transmission zeros given by:

{1.0421, 0.9993, -0.9997, -0.9856}
and has the property that (CB) in (2) is invertible.
If £(0) = 0,w = [0 0] , then it follows from (6), that

the limiting optimal cost of the performance index
(3), as € = 0, is given by

Jopt = 0-01(yref - n)’M(yref —1) (16)

where
M= 26.277 24.245
T | 24.245 26.287
trace(M) = 52.56 (17)

Now if we sample the augmented system (12) with
h = 0.01, the resultant sampled system is non-
minimum phase with transmission zeros given by:

{-3.7311, -3.6914, -0.2679, -0.2651, 1.0421, 0.9931

and in this case, the new additional sampled trans-
mission zeros, {-3.7311, -3.6914, -0.2679, -0.2651},
are close to the roots of the Euler polynomial £3(z).
The sampled augmented system also has the prop-
erty that (CB) in (12) is invertible. Now if 2(0) = 0,
w = [0 0], it follows from (6), that the limiting
optimal cost of the performance index (3), as € — 0,
is given by:

Jopt = 0.0L(yrer —0) M(yrep —n)  (18)

where
M 26.813 24.236
T 124.236 26.813

trace(M) = 53.623 (19)

It is observed that the limiting optimal cost (19)
is approximately the same as (17) as predicted by
theorem 11.

The closed loop system obtained using the robust
servomechanism controller RSC is simulated with
2(0) =0, Yrey = [1 1] , 7 =1[00], and w = 0 in
Figure 1 (a.l) and (a.2), which implies from (16)
that Jopr = 1.01.

The closed loop system obtained by using the ripple-
free robust servomechanism controller, is simulated
for the case of zero initial conditions, y,.r = [1 1]1,
n=100], and w = 0 in Figure 1 (b.1) and (b.2),
which implies from (18) that J,,: = 1.02.

It is seen from figure 1 that the optimal costs
obtained do confirm the results obtained in (16) and
(18).

5. CONCLUSIONS

An explicit expression is obtained for the limiting
performance cost associated with the error track-
ing/regulation in the RFRSP. This cost is compared
to the limiting performance cost associated with the
error tracking/regulation in the RSP and it is shown
that the two costs coincide.
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Fig. 1. Closed loop response with RSC and RFRSC
for example 1: ypep = [11],w=1[00] .

REFERENCES

Ben Jemaa, L. and Davison, E. J. (1996). The
perfect robust servomechanism problem for sam-
pled LTI systems. 4th IEEE Mediterranean Sym.
on New Direction in Control and Automation,
Maleme Crete, pages 298-303.

Ben Jemaa, L. and Davison, E. J. (1999). Perfor-
mance limitations in the robust servomechanism
problem for sampled LTI systems. 14th World
IFAC Congress, China, C:37-42.

Ben Jemaa, L. and Davison, E. J. (2000). Per-
formance limitations in the robust servomech-
anism problem for proper sampled Iti systems.
IFAC Conference on Manufacturing, Modeling,
and Control (MIM 2000), Patras, Greece, pages
13-18.

Davison, E. J. (1976). The robust control of a
servomechanism problem for linear time-invariant
multivariable systems. I[EEE Trans. Automat.
Contr., AC-21(1):25-34.

Davison, E. J. and Scherzinger, B. M. (1987). Per-
fect control of the robust servomechanism prob-
lem. IEEE Transactions on Automatic Control,
32(8):689-702.

Davison, E. J. and Wang, S. H. (1973). Properties
of LTI multivariable systems subject to arbitrary
output and state feedback. IEFEE Trans. Au-
tomat. Contr., AC-18(1):24-32.

Davison, E. J. and Wang, S. H. (1974). Properties
and calculation of transmission zeros of linear
multivariable systems. Automatica, 10:643-658.

Doraiswami, R. (1981). A robust control strat-
egy for single-input, single-output sampled-data
servomechanism problem. 8th World IFAC
Congress, Kyoto, Japan.

Doraiswami, R. (1982). Robust control strategy
for a linear time-invariant multivariable sampled-
data servomechanism problem. IEE Proc., 129(6).

Doraiswami, R. (1997). Ripple-free design for lin-
ear multivariable sampled-data systems. Dept.
of Electrical Engineering, University of New
Brunswick.

Emami-Naeni, G. F. A. (1984). Design of ripple-
free multivariable robust servomechanisms. Pro-
ceedings of the 23rd Conference on Decision and
Control, Las Vegas, pages 1709-1714.

Goldenberg, A. and Davison, E. J. (1974). The
feedforward and robust control of a general Ser-
vomechanism Problem with time lag. 8" Annual
Princeton Conf. Inf. Sci. Syst., pages 80—84.

Hagander, K. A. P. and Sternby, J. (1984). Zeros of
sampled systems. Awutomatica, 20.

Qiu,, J. C. L. and Toker, O. (1997). Limitations
on maximal tracking accuracy. Technical Report,
University of California, Riverside.

Qiu, L. and Chen, J. (1998). Time domain charac-
terizations of performance limitations of feedback
control. Submitted for publication.

Qiu, L. and Davison, E. J. (1993). Performance
limitations of non-minimum phase systems in the
servomechanism problem. Automatica, 29(2):337—
349.

Seron,, A. W. J. F. M. and Middleton, R.
(1998). Cheap control tracking performance for
non-right-invertible systems. Technical Report
EE9818, University of Newcastle.

Shaked, U. (1980). Singular and cheap optimal con-
trol: the minimum and nonminimum phase cases.
Technical Report TWISK 181, National Research
Institute for Mathematical Sciences, Pretoria, Re-
public of South Africa.



