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Abstract: This paper proposes a fuzzy and rough sets integrated approach to fault 
diagnosis.  The basic concepts of the rough set theory are firstly introduced, and then it 
describes how the rough sets theory is combined with fuzzy logic to form a new fault 
diagnostic scheme. An application example, marine diesel engine fault detection and 
diagnosis system, is presented, and the simulation results with on board real data 
demonstrate the effectiveness of the proposed approach.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
In recent years, there is an increasing demand for 
modern industry systems to become safer and more 
reliable (Patton, et al., 1995; Frank, 1990). The key 
issue is how to detect and diagnose faults 
automatically to avoid systems shut down. In order to 
satisfy the requirement of modern industry, many 
fault diagnosis methods have been developed. A fault 
diagnosis system should include the capacity of 
detecting, isolating and identifying faults.  Recently, 
artificial intelligence (AI) approaches, such as expert 
systems, artificial neural networks, fuzzy sets and so 
on, is widely used to detect and diagnose faults. 
Usually, most information is imprecise, incomplete 
and uncertain. In order to draw conclusion, one must 
be able to handle such uncertain information. 
Normally, there are two kinds of imperfect 
knowledge: vagueness and indiscernibility. Fuzzy 
sets theory, which was introduced by Zadeh, has 
already demonstrated its usefulness in dealing with 
vagueness. To deal with indiscernibility, rough sets 
theory was first proposed in Pawlak (1982). From 
then on, rough sets theory has been well developed 
and applied in many fields, such as cement kiln 

control (Sandness, 1986) and decision analysis 
(Pawlak, et al. 1994), etc. The combination of rough 
sets and fuzzy sets theory can deal with the 
uncertainty of the diagnosis problem more effectively. 
In this paper, the rough set theory is used to analyze 
the decision table composed of condition attributes 
and decision attributes. The knowledge is represented 
by a group of fuzzy rules, which can be obtained 
from the historical information of the diagnosis 
system. In order to reduce abundant fuzzy rules and 
attributes or inconsistent information, rough sets 
theory is used to find a minimal reduct and form a 
group of final fault diagnostic rules. 

 
 
2. AN OUTLINE OF ROUGH SETS THEORY 

 
Basic properties of rough sets are related to the 
knowledge about the universe of discourse expressed 
by the indiscernibility relation. The two key concepts 
of rough sets theory are reduct and classification. 
Reduct means the subset of attributes that determines 
the equivalence classes as the set of all attributes, and 
classification means a family of subsets of the 
universe. 
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 2.1 Information system and decision table 
 
Formally, an information system (IS) is used to 
represent uncertain knowledge (Shen, et al., 2000).  

( )qq fVΩUIS ,,,=  

U −−a nonempty, finite set called the universe.  
Ω −−a nonempty, finite set of attributes. DCΩ ∪= ,  

in which C is a finite set of condition attributes 
and D is a finite set of decision attributes.  

qV −−for each Ωq ∈ , qV is called the domain of q. 

qf −−an information function qq VUf →: . 

 
The decision table is a knowledge representation 
system. The columns are labeled by attributes 
(include condition attributes and decision attributes), 
and each row describes one elementary set. Example 
of a decision table is given in Table 1, { }5,4,3,2,1=U , 

{ }edcbaΩ ,,,,= , { }2,1,0=qV , condition attributes C 
={a, b, c}, decision attributes D={d, e}. 

 
Table 1 a decision table 

 

U  a b c D e 
1 2 1 1 1 0 
2 0 1 2 2 1 
3 1 1 1 0 0 
4 0 1 1 2 2 
5 2 2 1 1 0 

 
 
2.2 Indiscernibility relation 
 
For every subset of attributes AB ⊂ , an 
indiscernibility relation Ind(B) is defined in the 
following way: two objects, ix and jx , are 
indiscernible by the set of attributes B in A, if 

)(=)( ji xbxb  for every Bb ∈ .  

( ) ( ) ( ) ( ){ }jiji xbxbBbforUxxBInd =∈∀∈= ,|, 2  (1) 

Where Ind(B) is an equivalence relation and  

I
Bb

bIndBInd
∈

)(=)(                               (2)                      

 
The equivalence class of Ind(B) is called the B-
indiscernibility relation, for it represents the smallest 
discernible group of objects for set B. Objects 

ix , jx satisfying relation Ind(B) are indiscernible by 
attributes from B. Furthermore, for any element 

Uxi ∈ , the equivalence class of ix in relation Ind(B) 
is represented as ( )BIndix ][ . 
 
The notation U/A denotes elementary sets of the 
universe U in the space A .  Consider the subset 
B={a, b} in Table 1, then  
 

{ }( ) { }{ }{ }{ }4,2,5,3,1=eIndU   

( ) { }{ }{ }{ }{ }5,3,4,2,1=BIndU  

2.3 Lower and upper approximations 
 

The rough sets approach to data analysis hinges on 
two basic concepts, namely the lower and the upper 
approximations of a set, referring to: 1) the elements 
that surely belong to the set; 2) the elements that 
possibly belong to the set (Walczak, et al., 1999). X 
denotes the subset of elements of the universe U 
( UX ⊆ ) and Ω⊆B , then the lower approximation 
of X in B, denoted as BX, is defined as the union of 
all these elementary sets which are contained in X. 

[ ] ( ){ }XxUxBX BIndii ⊂∈= |               (3) 
The upper approximation of the set X, denoted as 
BX , is the union of these elementary sets, which 
have a non-empty intersection with X: 

[ ] ( ){ }ΦXxUxBX BIndii ≠|∈= I            (4) 
BNX, the boundary of X in U, is the set of elements 
that can be classified neither in X  nor in X on the 
basis of the values of attributes from B.  

BXBXBNX −=                            (5) 

For Table 1, Let B={a, b}, X={3, 4}, then the lower 
and upper approximations can be derived: 

}3{=BX , }4,3,2{=BX , }4,2{=BNX . 
 
 
2.4 Accuracy of approximation 
 
There are two kinds of measures to describe the 
quality of approximation. The first measure is named 
the accuracy of approximation of Ω by B: 

( )
∑ )(

∑ )(
=

i

i
B BXcard

BXcard
Ωα                         (6) 

Which expresses the possible correct decisions when 
classifying objects employing the attribute B. 
 
The second measure is called the quality of approxi-
mation of Ω by B: 

( ) ( )∑

∑ )(
=

Ucard

BXcard
Ωγ

i

B                        (7) 

Which expresses the percentage of objects, which 
can be correctly classified into Ω by B. 
 
For Table 1, Let B={a, b}, X={3, 4}, then the 
accuracy of approximation can be derived: 

( ) 3
1=ΩαB , ( ) 5

1=ΩγB . 
 
 
2.5 Reduct 
 
For each attribute ia , if ( ) ( )iaAIndAInd −= , the 
attribute ia is called superfluous. Otherwise, the 
attribute ia is indispensable in A. The reduct is the 
essential part of an IS, the core is the common part of 
all reducts.  



     

2.6 The discernibility matrix and function 
 
The elements of a discernibility matrix are defined as 
follows (Skowron, et al.  1992): 

( ) ( ) ( ){ }jiij xbxbBbC ≠∈= |  for nji ,...2,1, =    (8) 

 For the decision table as shown in Table 1, the 
discernibility matrix is shown in Table 2. The 
discernibility matrix can be used to find the reduct 
and core. To do this, one has to construct the so-
called discernibility function f(B), which is defined as: 
 

Table 2   The discernibility matrix for Table 1 
 

U 1 2 3 4 5 
1      
2 a,c,d,e     
3 A a,c,d,e    
4 a,d,e c,e a,d,e   
5 B a,b,c,d,e a,b a,b,d,e  
 

( ) ( )
( )

∏ ∑ ,=
2∈, Uyx

yxδBf  

         }0≠,1:)({= 2
≤≤≤ ijij cnijcUI               (9) 

For the discernibility matrix as shown in Table 2, the 
discernibility function is: 

abeabcAf +=)(                           (10) 
 
 

2.7 Classification 
 
Let { } UXXXXF in ⊂,,...,,= 21  be a family of 
subsets of the universe U. If the subsets in F do not 
overlap, i.e., ΦXX ji =I , and the entity of them 
contains all elementary sets, i.e., UX i =U for 

ni ,,1K= , then F is called a classification of U, 
while iX  are called classes. 
 
 

3. INTEGRATED AI DIAGNOSIS APPROACH 
 
3.1 Integrated AI diagnosis system structure 
 
The basic structure of the proposed integrated AI 
approach to fault diagnosis is shown in Fig.1. It has 
two major parts; one is a family of diagnostic rules, 
which are derived from knowledge base, these rules 
form a fuzzy-rule base for fault diagnosis.  Another 
one is data processing, since the data are incomplete, 
fuzzy logic and rough set are used to process the 
original data.  

 
 

3.2 The fuzziness and roughness 
  
Traditional quantity spaces require exact limits for 
the ranges that characterize qualitative value. Inexact 
behaviors and uncertain measurements are once 
again sources of problems, especially in the diagnosis 
where relatively small deviations from normal 
behavior have to be recognized, classified, and 
explained. Usually, it is impossible to determine the 

exact value of a variable. Thus, enumeration of 
possible values for unknown variables is more 
naturally accomplished using ranges rather than 
precise numbers.  
 

Fig. 1. The structure of integrated AI diagnosis 
 
For faults diagnosis, the input data of the system 
must be converted into a fuzzy set membership 
function by fuzzification. There are a variety of 
choices for membership functions, such as triangle, 
Gaussian and exponential shape functions.  

 
A family of fuzzy diagnostic rules can be derived 
from the knowledge base and produced by learning 
algorithms or fault mechanism analysis. Those rules 
form a rule base. Normally, a fuzzy diagnostic rule is 
describe as follows: 
 
IF            effects of the system, 
THEN     causes of faults. 
 
In this paper, the rule base is considered as an 
information system, shown in Table 3. As the set of 
condition attributes of decision table, characteristic 
parameter space }...,,{= 321 mccccC  denotes the set 
of characteristic parameters of diagnosis system, 
where ic denotes the i-th kinds of characteristic 
parameter of the diagnosis system. As the set of 
decision attributes of decision table, fault candidate 
space }...,,{= 321 nddddD denotes the set of fault 
elements, where id  denotes   the i-th   kind of fault 
source. Condition space }...,,{= 210 keeeeE denotes 
the set of condition attribute value, as a set of fuzzy-
qualitative values, which describes the degree of 
system parameter’s deviations from normal state, 
where ie , denotes the i-th level of characteristic 
parameter’s deviations from normal state. Such as, 

0e  denotes this characteristic parameter’s value in 
the range of normal state, 1e  denotes this parameter’s 
value in the range of relatively small deviations of 
normal behavior, and usually, ie denotes more 
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deviations than 1−ie . Fault classification space 
}...,,{= 210 jffffF  denotes the set of the degree of 

fault behavior, as a set of fuzzy-qualitative values, 
where if  denotes the i-th level of faults. Such as, 

0f denotes no faults, 1f denotes that a slight fault is 
occurred, and similar to E, when the subscript i 
becomes larger, the fault becomes more serious. 
Normally, all the faults can be divided into three 
levels or five levels according to the practical 
knowledge of the system. When the more detailed 
information of   fault diagnosis is given, the more 
levels can be divided. 
 
Table 3  A fuzzy set based rough sets decision table 

 

Condition 
Attributes 

Decision 
attributes 

 
U 
 c1 c2 C3… d1 D2 d3…

Rule_1 ie  je  ke … if  jf  kf …
Rule_2 … … … … … … 
Rule_3 … … … … … … 
…… … … … … … … 

Rule_n … … … … … … 

 
When the fuzzy-rules set is build, there must be some 
redundant and information-poor attributes, which are 
contained in fuzzy rules, particularly for complex 
system. In order to remove redundancy information, 
a preprocessing step using rough sets theory is 
necessary. Rough set theory reduces redundant and 
information-poor attributes without losing any 
information that is needed for rules induction. 
Furthermore, the reduction increases the speed of 
fault diagnosis. In addition, this approach is fast and 
efficient, while it maintains the underlying semantics 
of data. According to the final reduct, the most 
important attributes can be chosen from original 
attributes. 
 
 
3.3 Method of inference diagnosis 
 
When the system is in normal condition, there is no 
obvious fault and all the characteristic parameters are 
varied around the normal state. When there is at least 
one characteristic parameter deviating from normal 
state and beyond the acceptable range, the system 
performance will degrade, and it means that faults 
have occurred (Zhou, et al., 2000). From the 
knowledge base and decision table such as Table 3, 
some theorems can be drawn as follows: 
 
Theorem 1. The effects that the deviations of 
condition attribute ic  from normal state take on the 
deviation of all the decision attributes. The effects is 
defined as follows: 
 
Definition 1: Let D, F, C, E form a knowledge base, 
with the condition jc , the )(= ∈ jkiijk cfdµµ  
denotes the measure vector as followed: 

),,,( 1-10 ijuijij µµµ K  

( )mjniforµ
u

k
ijk KK ,2,1=,,2,1=,1=∑

1-

0=
   (11) 

So the group of matrixes  
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   ( ni ,...,2,1= )                             

(12) 
This group of matrixes named the matrix of single 
condition for fault diagnosis.  
 

Theorem 2: The effects that all the condition 
attributes take on the single decision attribute. For 
single candidate fault, the m kinds of characteristic 
parameters take different effect on the same fault. 
And the same parameter takes different effect on 
different candidate faults. The effects is defined 
below: 
 
Definition 2: Let D, F, C, E form a knowledge base, 
for the single candidate fault id ),...,2,1=( ni , the 
weight parameters ),...,2,1=( mjwij  reflect all the 
parameter’s effects on the candidate fault. 
 

      ( ) niwwww imiii ,...,2,1,...,,ˆ 21 ==          (13) 

is the weighting vector. 

∑ 1=,10,)(=
1=

× ≤≤
m

j
ijijmnij wwww         (14) 

is the weighting matrix. 
 

When candidate fault id  occurs, there must be some 
characteristic parameters, which are beyond the 
normal state. Then ji fd ∈  denotes that fault-i   
belongs to the j-th faults level. Furthermore, the 
formula )∈(= jiij fdcofcof  denotes the confidence 
of the ji fd ∈ . If cof satisfy the conditions: 

10 ≤≤ ijcof                                  (15) 

1=∑
j

ijcof                                 (16) 

ikijkji cofcofcof +=∪,                        (17) 

Where 1,...1,0;,...,2,1 −== ujni  and Φcc kj =I , 
then cof is the measure on F. 

∑=
1=

m

j
ijkijik µwcof         (18) 

( ))1(10 ,...,, −= uiiii cofcofcofcof                (19) 

iii wcof µ×=                 (20) 

( )τncofcofcofcof ,...,, 21=               (21) 



     

The cof  is the fault identification matrix. According 
to this matrix, the confidences of the candidate faults 
can be measured, as follows: 

 
Given id , }...,,{= 1-210 uffffF and the confidence 

( )15.0 ≤≤λλ , if 
 

cofk = min }Σ{ ≥
0=

λij

k

j
cofk  ( 10 ≤≤k )     (22) 

        
 
then 

cofki fd ∈ with the confidence λ . 
 
 

4. APPLICATIONS 
 
In this section, the integrated AI diagnosis approach 
based on fuzzy sets and rough sets theory is applied 
in a marine diesel engine system (Zhou, et al., 2000). 
 
In this system, there are two important condition 
attributes: exhaust temperature )°( CTr  and utmost 

pressure )10( 5 PaPz , considered as the characteristic 
parameters of the marine diesel engine. The range of 
value of exhaust temperature is ]°360,°320[∈ CCTr  
and the range of value of utmost pressure is 

]10×137,10×123[∈ 55 PaPaPz .  
 
There are 6 kinds of common faults: nozzle enlarged 
(F1), nozzle blocked (F2), valve seat leaked (F3), 
injection time late (F4), injection time early (F5) and 
exhaust pipe blocked (F6). 
 
Fault candidate space consists of these six candidate 
faults, { }654321 ,,,,, ddddddD = . Characteristic 
parameter space consists of two parameters, 

{ }21,ccC = . In fault classification space 
{ }210 ,, fffF = , 0f  denotes no faults; 1f denotes 

the slight faults; 2f denotes serious faults. Similarly, 
in condition space { }210 ,, eeeE = , 0e  denotes this 
characteristic parameter’s value is in the range of 
normal state, 1e  means in the range of relatively 
small deviations of normal behavior, and 2e  means 
beyond the normal state. 
 
For each parameter, its range of possible numeric 
values are divided into qualitative fuzzy subsets, see 
Fig.2.  
 
 
1       2e               1e           0e           1e               2e  
 
 
 
0           320       330         340         350        360 rT  
 
Fig. 2. (a) Fuzzy quantity space of rT  

        2e                  1e          0e           1e               2e    
 1 
 

 
0   

         123      126.5       130        133.5       137 zP  
 

Fig. 2. (b) Fuzzy quantity space of zP  
 
According to the range of parameter values, the 
whole space is divided into five subspaces equally. 
Triangle shape membership functions are selected. 
Then all the available quantitative parameters are 
transformed into qualitative fuzzy membership value. 
After fault mechanism analysis, the 6 kinds of 
common faults F1~F6 have relationship with the two 
characteristic parameters, form a family of fuzzy 
diagnostic rules, as shown in Table 4. 
 

Table 4 the decision table of fault diagnostic rules  
 

 

Condition Decision U 
rT  zP  F1 F2 F3 F4 F5 F6

R1 2e H 2e H f2 f0 f0 f0 f0 f0 
R2 2e H 1e H f0 f0 f0 f0 f0 f2 
R3 2e H 2e L f2 f0 f0 f2 f0 f0 
R4 2e H 1e L f0 f0 f2 f0 f0 f0 
R5 2e L 1e L f0 f2 f0 f0 f0 f0 
R6 1e L 2e H f0 f0 f0 f0 f2 f0 

 
Where H and L denote the direction of deviations of 
condition attributes, H denotes positive deviation 
while L denotes negative deviation.  
 
Generally, after built up the decision table of given 
information system, one should use the rough set 
theory to reduce the redundancy of the fuzzy fault 
diagnostic rules, deal with the inconsistency and get 
the minimization of decision algorithms. These 
algorithms form a rule base. 
 
In general, the rest procedure is divided into the 
following three steps: 
 
Step 1: From the qualitative values of parameters and 
the diagnostic rule base, ( )nii ,...,2,1, =µ , a group of 
matrixes are obtained.   
 
Step 2: Then, the weight matrix w  is calculated with 
the given information. 
 
Step 3: With ( )nii ,...,2,1, =µ  and w , the fault 
identification matrix can be obtained, from which the 
possible faults are diagnosed. 
 
For example, a set of parameters is shown in Table 5, 
which is measured on board   in a ship. 

 
 



     

Table 5. A set of practical parameters 
 
 

 Group 1 Group 2 Group 3 

rT  356.0 340.0 356.0 

zP  137.2 137.2 131.0 

   
For Group 1 ( rT =356.0, zP =137.2), from Table 4 
and Fig. 2, one can draw: 
 

 







=

100
6.04.00

1µ     ( )72.0,28.0=ˆ1w  

 









=

100
6.04.00

6µ     ( )20.0,80.0=ˆ 6w  

 
Where the weight vector is calculated by the rules as 
follows: 
 
1) If the rules tell that there is a parameter more 
important than another one, then select the weight of 
that parameter to be 0.80, and the weight of another 
parameter to be 0.20.  
 
2) Otherwise, the weight vector can be calculated by 
the entropy method.  

 
Thus, the matrix of fault identification cof  is  
 









=

68.032.00
89.011.00

cof    

 
Similarly, the diagnosis results for group 2 ( rT = 
340.0, zP =137.2) and group3 ( rT =356.0, zP =131.0), 
which are shown in Table 6 (With the confidence 

7.0=λ ). 
 

Table 6 The result of fault diagnosis 
 

 

Condition Result 

rT  zP  F1 F2 F3 F4 F5 F6
356.0 137.2 2f  0f 0f  0f  0f 2f
340.0 137.2 0f  0f 0f  0f  2f 0f
356.0 131.0 0f  0f 2f  0f  0f 0f

 
 

5. CONCLUSIONS 
 
In this paper, an integrated AI fault diagnosis 
approach using fuzzy sets and rough sets theory is 
presented. An application example, marine diesel 
engine diagnosis system, has been discussed in order 
to verify the effectiveness of the proposed approach. 
The result demonstrates that the combination of 

fuzzy sets and rough sets theory may play important 
role in fault diagnosis. 
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