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Abstract: An autopilot combining an indirect adaptive controller with approximate
feedback linearisation is proposed in order to achieve asymptotic tracking. Adap-
tation is introduced to enhance closed-loop robustness, while approximate feedback
linearisation is used to overcome the problem of unstable zero dynamics. Computer
simulations show that this approach offers a possible autopilot design for non-linear

missiles with uncertain parameters.
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1. INTRODUCTION

The performance of aerospace systems such as air-
craft, spacecraft and missiles is highly dependent
on the capabilities of the guidance, navigation and
control systems. To achieve improved performance
in such aerospace system systems, it is important
that more sophisticated control systems be de-
veloped and implemented. In particular, as the
performance envelope is expanded, the control
schemes must become adaptive and nonlinear, to
provide performance over a greater range, in the
face of uncertain or changing operating condi-
tions.

The tracking performance of a missile is also de-
pendent on the location within the flight envelope
and varies with factors such as Mach number and
dynamic pressure. Several approaches, including
adaptive control Lin and Cloutier (1991), nonlin-
ear control White et al. (1998), and gain schedul-
ing Shamma and Cloutier (1993) have been used
to alleviate these tracking problems. While gain
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scheduling is conceptually simple and has been
proven successful, it has virtually no guarantee
of stability in the transitional periods between
operating points and relies on the fact that the
scheduling variables should only change slowly.
Furthermore, there is a heavy design overhead due
to the large number of linear controllers which
must be derived and, as the performance demands
of modern-day missile systems become more strin-
gent, alternatives to linear control are of increas-
ing practical significance.

Feedback linearisation is a popular method used
in nonlinear control applications, and there have
been several flight control demonstrations Snell
(1992). Dynamic model inversion is the feedback
linearisation method employed to design the mis-
sile autopilot. This method is very effective in
applications to aircrafts and missiles. The main
drawback of dynamic model inversion is the need
for high-fidelity nonlinear force and moments
models that must be invertible in real time, which
implies a detailed knowledge of the plant dynam-
ics, and the approach tends to be computationally
intensive. In general, dynamic model inversion



is sensitive to modelling errors. The application
of robust and/or adaptive control can alleviate
this sensitivity and therefore the need for detailed
knowledge of nonlinearities.

In this paper an adaptive nonlinear control design
technique is applied to the autopilot for the missile
model which is aerodynamically controlled. Mis-
sile motion is modelled to be nonlinear with un-
known parameters. Based on the model, we adopt
a design procedure similar to Sastry and Bodson
(1989), basically an adaptive feedback linearisa-
tion method. In this scheme, unknown parame-
ters are estimated and based on these estimates,
control parameters are updated. Computer sim-
ulations show that this approach is very promis-
ing to apply the autopilot design for the missiles
which are highly nonlinear in aerodynamics with
unknown parameters.

The missile model can be represented in the
general nonlinear state space:

iE(t) = f(mz 0) + g(wa e)u
y(t) = h(z,0) (1)

Typically the control law is based on a vector 6

which is an on-line estimate of the true parameter
vector #. The update laws for these adjusted pa-
rameters are determined as a part of the design
and shall be such that the closed loop system
stability is preserved. The convergence of these
parameters estimates to their true value 6 is a
necessary condition in indirect schemes of adap-
tive control.

An indirect adaptive controller consists of a pa-
rameter identification scheme and a controller
whose gains are calculated on-line based on esti-
mates of the plant model parameters. The struc-
ture of the plant assumed a priori, but the co-
efficients or parameters involved are estimated
based on the available input/output information.
Figure (1) show the schematic diagram for indi-
rect adaptive control schemes. The identification
block estimates the plant parameters from the
control signal and the output measurement. The
estimated parameters are then used to update the
controller gains according to one of the several
control methodologies.
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Fig. 1. Schematic diagram for indirect adaptive
control schemes

The parameter identifier is used in the outer loop
design and continuously adjusts the parameters

estimates based on observation error. The cer-
tainty equivalence principle suggests that these
parameter estimates that are converging to their
true values may be employed to asymptotically
achieve the desired objective as a parameter esti-
mates converge to their true value. The adaptive
scheme developed for the lateral missile flight con-
trol system is presented in the following sections.

Other adaptive schemes such as direct adaptive
control schemes are discussed in details in Sas-
try and Bodson (1989). In schemes of that form,
parameters do not need to converge to their true
value but they are required to stay bounded and
converge to some constant. Typically, if the sys-
tem is persistently exciting then all the parame-
ters will converge to their true values.

2. MISSILE MODEL

The missile model used in this study derives
from a non-linear model produced by Horton of
Matra-British Aerospace Horton (1992). It de-
scribes a 5 DOF model in parametric format with
severe cross-coupling and non-linear behaviour.
This study will look at the reduced problem of
a 2 DOF controller for the pitch and yaw planes
without roll coupling. The angular and transla-
tional equations of motion of the missile airframe
are given by:

I 1
7= S PVoSA(5dCnrT + Crov + VoCrcC)
1
0= 5=pVoS(Cyvv + VoCyc¢) — Ur 2

where the variables are defined in Figure 2.
Equations 2) describe the dynamics of the body

Fig. 2. Airframe axes

rates and velocities under the influence of exter-
nal forces (e.g. C,y) and moments (e.g. Cpy),
acting on the frame. These forces and moments
are derived from wind tunnel measurements and
by using polynomial approximation algorithms
Cyuv, Cy¢, Cnr, Cny and Cre Horton (1992) can be
represented by polynomials which can be fitted to
the set of curves taken from a look-up tables for
different flight conditions. A detailed description
of the model can be found in Horton (1992).



The aerodynamic forces and moments acting on
the airframe are non-linear functions of Mach
number, longitudinal and lateral velocities, con-
trol surface deflection, aerodynamic roll angle and
body rates. Control of the missile will be accom-
plished in this paper by controlling an augmented
version of lateral acceleration. The dynamic equa-
tion for lateral acceleration can be derived White
et al. (1998) and is given by:

a=v+4+Ur
a=V?(Cypv+ VoCyc()
=V°[(Cyug + Cyvpy M + Cyo,, | [Jv
FVo(Cy¢o +Cyeps M+ Cye, [0 ()]
=V[(Cywov + Cyo, | v )0+ VoCyeo§ + VoCye, | v | (]
=¢(v) +9(v,¢) 3)

where the Mach number M, and the total velocity
V, are slowly varying.

3. NON-LINEAR STATE-SPACE MODEL FOR
LATERAL DYNAMICS

The equations (2) describing the angular and
translational dynamics of the non-linear system,
have also been recast in polynomial format, to
give:

V= fo(v,7) + gu(v,7)¢
T=fr ('Uy T) + 9gr (U:T)C (4)

which can be written in matrix format. As the

pitch and yaw equations are not coupled in this
example, and as the missile is symmetric in both
planes, only one plane (the yaw plane) need be
treated as shown in equation (5).

T _ facl (:C) gzl(w)
[u] = [fmz(x)] * [m(z)] v B
where:

T = [1:1 zz]T: [v T]T

w=¢

4. APPROXIMATE INPUT-OUTPUT
LINEARISATION

The state—space form of the non-linear system of
the home missile can now be written in a compact
parametric format, as:

&1 = a121 + a2z + a3z + (@az1 + as)uz
To = bll'? + ng% + b3x1 + baz172 + bsx2

+(bsz1 + b7)u1 (6)

or in matrix form:

&= f(z) + g(z)u

y =h(z) = (a1z1 + a2z1) 71 (1)

This equation is now in standard form and input-
output linearisation techniques can be applied
to it. In order to retain the system order with
no zero dynamics, an approximate input—output
linearisation technique is applied to the missile
model. It is based at the second approximation
method involving the modification of the function
g presented in Hauser et al. (1992).

Using this approximation technique, terms are
discarded in order to retain an approximate sys-
tem with an equivalent order and relative degree.
In other words the g vector field is modified. This
is achieved by neglecting the term ¢ (z1,u1) shown
in (8) as it will not affect the stability of the closed
loop dynamics.

Let 61 = ¢1 = h(.fL') =x- Then:

é1=& +9(z,u1)
&2 = a(z) + B(x)u = v(z,u) (8)

Hence the output y possesses a relative degree
of 2.

The relative degree of the system is now v = 2,
and has the same order as the original system.
Therefore there are no internal dynamics. Since
the relative degree is equal with the order of the
system, fully linearisation of the non-linear system
can now be achieved.

The effect of neglecting the term ¢(z,u;) in
equation (8) is to eliminate a non-linear zero in
the system within the model description. It had be
shown in White et al. (1998) this will not affect the
performance of the control design in a significant
manner as the zero can be approximated by:

~ (@)
Bi(z)

(9)

Examination of equation (9) shows that z is al-
ways positive if the fin moment arm is greater than
the static margin. This is true in all well designed
missiles as the fin moment arm gives the small fin
force sufficient turning moment to overcome the
lift induced moment from the static margin. Hence
the non-linear zero will always be in the stable left
half s plane. It will tend to enhance the stability of
the closed loop system, rather than detract from
it; hence if the linearisation takes place without
taking the zero into account, the resulting system
should be more stable. Equation (8) represent a
direct relationship between the outputs h and the
inputs u Wang (1994). The required static state
feedback for decoupled closed loop input/output
behaviour is given by:

u=p""[v—a (10)
where (3 is the characteristic or decoupling polyno-
mial of the system which has nonsingular solutions

for the operating envelope. The linearised closed
loop system is now given by:

y=v (11)



Where nu is the new linearised system input Wang
(1994). Now choose the new control input to be:

v ="4q —kié — koe (12)

where e = y — y4- The close-loop system is thus
characterised by:

€+ kié+kae=0 (13)

where k1 and ko are chosen using classical pole-
placement such that all roots of s2 + kis+ ks =0
are in the open left-half plane, which ensures
lim;_, e(t) = 0 Wang (1994).

It can be said that now the tracking control prob-
lem for the non-linear system has been solved
using the control law in equation (10) and (12).
Indeed, since equation (13) has the same order as
the non-linear system, there is no part of the sys-
tem dynamics which is rendered “unobservable”
in the approximate input—output linearisation.
Since there are no zero dynamics in the linearised
system, the stability of the linearised system can
be guaranteed and the tracking problem has been
solved.

5. TRAJECTORY CONTROLLER DESIGN

between the two and that steady state values are
very close. This illustrates the small effect that
the fin force has on the missile acceleration and
justifies the use of the augmented acceleration.
The results also show that the actuator does not
significantly affect the design. The non-linear ap-
proach is also shown to be reasonably accurate,
as the predicted and actual performance are very
close.
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Fig. 3. Trajectory control design

Figure 3 shows the non-linear controller structure.
A fast linear actuator with natural frequency of
250 rad/sec has been included in the non-linear
system. The error dynamics are constructed using
the a4 signal and the feedback of the actual states
- velocity, rate and acceleration.

The error coefficients in (13) are chosen to satisfy
a Hurwitz polynomial. For the second order error
equation in each channel, k; = 2¢w,, and k2 = w2,
where w,, = 60(rad/sec) and ¢ = 0.65. The speed
of response is significantly faster than the open
loop missile response and so should exercise the
dynamics of the non-linear missile sufficiently for
meaningful conclusions to be drawn.

The results of a 100 m/sec? demand in accelera-
tion is shown in Figures 4, 5 for the 100 m/sec?
case. The figures show almost identical step re-
sponses with some variation in peaks and steady
state values for the body rate, the actuator move-
ment and the lateral velocity. The difference be-
tween the lateral acceleration and the augmented
acceleration shows that there is a good match
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6. ADAPTIVE NONLINEAR CONTROL

The design presented in the previous section was
for the nominal missile model. However neither
the Mach number nor the mass of the missile re-
main constant. As the flight conditions vary both
Mach number and mass vary. We showed that the
different aerodynamic coefficients are multi-linear
functions of Mach number and mass. Hence, as
these two variables vary, th aerodynamics coef-
ficients vary. Since the feedback control law was
design only for the nominal values of the aero-
dynamic coefficients, any variations of these will
cause inexact cancellation of the system’s nonlin-
earities, i.e. inexact decoupling. Consider a SISO
nonlinear system of the form (5) under parametric
uncertainty:



.’,C(t) = f(xz 0) + g(wa e)u
y(t) = h(z,9) (14)

Further, assume f(z) and g(z) have the form:

f(2,0) =" 0f i(a)

7};1
9(@,0)= Y 0gi() (15)
i=1
with 67 and 69 vectors of unknown parameters

and f;(z) and g;(z) known functions. The esti-
mates of these functions are given by:

f@,0)=> 0! fi(w)
i=1

3(@,0) =) _ 0g:(x) (16)
i=1

where 6; are the estimates of the unknown
aerodynamic parameters §; and are multi-linear
functions of Mach number and mass. Now let’s
replace the control law (10) by:

g = [7 Th+ uad] (17)
LyL} ™ h

with:

Vod = yfﬂ) + kv_l(y(fﬁ’” — &)+ +ko(ys — &1)(18)

where k; are chosen as before and fi,l = L’]}h are

—

replaced by their estimates Lh:

R —

Ei:chh = Lfi—lﬁ

—

L,L7 'h = L1 'h
gl 9ty
(19)

As in Sastry and Bodson (1989), since these esti-

mates are not linear in the unknown parameters
0;, we define each of the parameters products to
be a new parameter. For example:

n m
—1 -1
LgL}~'h = E E 0f09Lg LY h (20)

i=1 i=1

and we let ® € RP be the large p-dimensional
vector of all multi-linear parameter products
67,69,0769, .. .. The vector containing all the es-

77 J 'Y 7 b
timates is denoted by © € R?P with ® = © — O
representing the parameter error.

Due to the indirect nature of our approach, this
overparametrization does not increase the com-
plexity of the closed loop system since a param-
eter identifier is to be used to estimate the un-
known parameters 6;. The parameter vector © is,
however, constructed here in order to show the
stability of the resulting adaptive system. Using
the control law(17) in (8) yields:

—

57 =Llh+ [L,,L}*lh - LgL;*Ih] Uad — L}h + Vag

= [L} — Eﬂ + [LQL}*lh — LgL}*lh] Ugq + Vd21)
Subtracting v in (12) from both sides gives:

—

e? 4+ kiel + koe = [LQL}h - LgL}h] Uad

2 _ 72 —
+ [Lf —Lf,] + k1 (Lf —Lf)

=" w(@, uaa(z))

where: wT = [LgL}hkuad(xﬂ e |thk]. There-
fore, in the closed loop, for the approximate sys-
tem, we have in compact form:

¢=Ae+ WT(z,uqq(z))® (23)

where A ig a Hurwitz matrix and note that if
¢ =0—-—6 - 0ast - oo, then & — 0 as
t — 00. To estimate the unknown parameters, we
consider an observer-based identifier proposed in
Taylor et al. (1989), Kudva and Narendra (1973).
First we rewrite (14) as:

e tian ()
= Z%(x, uqq(x))0 (24)

Consider the following identifier system:

"?: A('ﬁ - J)) + ZT(mauad(w))é
6=—Z(z,u)P(& — ) (25)

where A is a Hurwitz matrix, & is the observer
state, z is the plant state in (14), and P > 0

is a solution to the Lyapunov equation AP +
PA = —)\I with A > 0. We assume that all the

states z in (14) are available and hence & and 6 are
given by (25). We also assume that € is a vector
of constant but unknown parameters. Then:

é=Ae+ z7 (z,u)¢
¢ = —Z(z,u)Pé (26)
is the observer error system where é = & —x is the

observer state error and ¢ = 6—6 is the parameter
€error.
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Fig. 6. Adaptive Tracking Control Design

Properties of the observer-based identifier in (26)
are given in Sastry and Bodson (1989)and are:



(1) ¢ €

@)Wmd)—0¢®5¢@)WZO

( ) € Lo NLo

(4) if ZT(z,uqq) is bounded then é € Lo and

é—>0ast—> o0

(5) é and ¢ converge exponentially to zero if
Z(z,u) is sufficiently rich (i.e. 301,082,060 > 0
such that V¢ : 6,1 < [[77 ZZTdr < §,1

However, since Z(z,u) is a function of state z, the
condition 5 can not be verified ahead of time.

The block diagram of our adaptive lateral flight
control design for the nonlinear missile is shown
in Figure 6 while results of the adaptive scheme
are shown in Figure 8. Good tracking performance
for variation up to 35% in Mach number and mass
is achieved.
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7. CONCLUSIONS

Dynamic model inversion is the feedback lineari-
sation method employed to design the missile au-
topilot. The main drawback of dynamic model
inversion is the need for high-fidelity nonlinear

force and moments models that must be invertible
in real time, which implies a detailed knowledge
of the plant dynamics, and the approach tends to
be computationally intensive. In general, dynamic
model inversion is sensitive to modelling errors. In
this paper an adaptive nonlinear control design
technique is applied to the autopilot for the mis-
sile model which is aerodynamically controlled.
Missile motion is modelled to be nonlinear with
unknown parameters. In the adaptive scheme used
in this paper, unknown parameters are estimated
and based on these estimates, control parameters
are updated. Computer simulations show that this
approach is very promising to apply the autopilot
design for the missiles which are highly nonlinear
in aerodynamics with unknown parameters.
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