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Abstract In this paper a new approach to fault diagnosis in an AC motor is introduced. This
system combines a neuro-fuzzy system called FasArt (Fuzzy Adaptive System ART based)
and the well-known fuzzy k nearest neighbor algorithm.
A set of 15 types of non destructive faults has been tested, reaching a high degree of early fault
detection and fault type recognition. Moreover, taking into account the neuro-fuzzy nature of
the FasArt model, a set of fuzzy rules, containing the knowledge learnt by the system, has
been extracted. These rules permit a transfer of the knowledge from a numerical to a symbolic
level where the fuzzy rules describe the fault in linguistic terms that can be interpreted by
humans in an easier way.
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1. INTRODUCTION

For most real-world problems in modern industries
there are a lot of data about the development of these
processes. These data contain the knowledge about the
behaviors that rule these processes and how these are
ruled, but these aspects are hidden in data and are
not directly accessible to humans. One of the most
important aspects of any research work is to obtain the
knowledge about the process and to be able to interpret
and understand it.

Some approaches to extract the knowledge hidden in
the data can be found in the bibliography: in (Wang
and Mendel, 1992) and (Abe and Lan, 1995) fuzzy
rules are generated from examples, in (Fu, 1994) a
generation of rules from neural networks is described,
etc. These methods permit the knowledge to be trans-
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ferred from a numerical level to a symbolic level
which is easier to humans.

Fuzzy logic and neural networks are two techniques
that have been successfully applied to problems in
several areas. These neuro-fuzzy systems combine the
advantages of the two paradigms: learning from exam-
ples and capacity for dealing with fuzzy information.
In this paper a neuro-fuzzy ART based system, FasArt,
is used as the kernel of the system for detecting and
classifying incipient faults as early time as possible,
before the machine eventually suffers a failure or per-
manent damage. The knowledge learnt by the neuro-
fuzzy system has been extracted as a fuzzy rule set
containing the knowledge about the faults in “human”
terms.

This system has been applied to an AC motor in order
to carry out fault diagnosis. Several types of electrical
motors are extensively used in a great variety of indus-
trial environments. Safety, reliability, efficiency and
performance are some of the most interesting aspects
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concerning motors. In order to reach high levels in
these aspects, monitoring, on-line fault detection and
automatic diagnosis are needed in modern industry.
A review of the most usual motor problems, and the
applied techniques are in (Finley and Burke, 1994),
(Chow, 1997), (Benbouzid, 1999), (Nandi and Tolyat,
n.d.) and (Arnanz et al., 2000).

The proposed neuro-fuzzy system uses the FasArt
model (Cano et al., 2001) and, as auxiliary, the
fuzzy k nearest neighbor algorithm. The FasArt model
is a supervised system that has been applied suc-
cessfully to several problems: pattern recognition
(Sainz Palmero et al., December 2000), system identi-
fication (Sainz Palmero et al., 2001), etc. In this case,
it is combined with the well known fuzzy k nearest
neighbor algorithm and applied to the detection and
classification of faults in an AC motor. The integra-
tion between the two components of this approach is
carried out in the learning stage, the k mean fuzzy
algorithm allows the input values of the learning data
set to be labelled in an easier and more effective way
than if this process is done by hand.

Moreover, after training the neuro-fuzzy system, the
knowledge learnt by FasArt can be explained by a set
of fuzzy rules that permits a better understanding of
the knowledge involved in the process.

The paper is organized as follows: First, the neuro-
fuzzy system FasArt (the kernel of the approach),
is briefly described. Then the fuzzy k mean nearest
neighbor algorithm and the way in which both are in-
tegrated are explained briefly. In addition a description
of the experimental motor laboratory plant, the tests
carried out, the results and the fuzzy rules obtained
are described and discussed in sections 4.2 and 4.3.
Finally, the main conclusions of work are set out.

2. FASART MODEL

FasArt (Fuzzy Adaptive System ART based) (Cano
et al., 2001) is a supervised neural network architec-
ture based on the Adaptive Resonance Theory. In this
model the neuron activation function employs a true
fuzzy operation, associating each category to a fuzzy
set, for which each input pattern produces a member-
ship degree. Due to these changes, FasArt has several
advantages over Fuzzy ARTMAP:� It achieves a dual membership/activation func-

tion. A new activation function for each neuron k
in Fa

2 is defined (see Figure 2) as the product of
fuzzy membership degrees on each input feature
i.e.:

ηRk
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Ii � (1)

where I � �
I1 �������	� Im � is the input pattern and

ηki

�
Ii � is the membership degree of input Ii to

unit k in layer Fa
2 , given by:

Figure 1. FasArt network architecture.

Figure 2. Membership function.
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where Wk � �
wk1 � wc

k1 �������	� wkm � wc
km � and Ck ��

ck1 �������	� ckm � are weight vectors associated to
neuron k. Although triangular membership func-
tions have been selected here (see Figure 1),
gaussian or bell-shaped functions could also
have been used. This duality of the weights al-
lows each unit of Fa

2 to be represented as a fuzzy
set.� The weight vector Wk has the same functionality
as in Fuzzy ARTMAP, but a new weight vec-
tor, Ck, is defined for each neuron k of the F2
levels, through a similar learning law as for Wk.
Ck represents the central point of the triangular
membership function, as shown in Figure 1.� FasArt performance is affected by some user-
tuned parameters inherited from Fuzzy ARTMAP:
a vigilance parameter in each unsupervised mod-
ule (ρa, ρb) controls the maximum allowed size
of categories (in FasArt, the maximum support
for fuzzy sets). During the test, ρa may be used
to produce an “unidentified” answer if there is
low confidence. Learning rates (βa, βb and β c

a ,
β c

b for the new weights vector C) determine how
fast categories should include prototypes. Usu-
ally βa � βb � 1 (fast-learning).

In addition, the degree of fuzziness can be
controlled through values of the parameter γ .
Values of γ � ∞ produce crisper fuzzy sets,
while values of γ � 0 increase the fuzzy nature



of sets. This value determines the support of the
fuzzy set.� The relations stored in the inter-ART map, Fig-
ure 1(a), can be interpreted to construct a fuzzy
rule set, with fuzzy sets in the input space defined
by ARTa categories and in the output space by
ARTb categories, obtaining rules of the following
form:

� IF Ia IS R jAND � � � THEN Ib IS Rk

where Ia, Ib are linguistic variables and R j,
Rk are fuzzy sets in the input and output space
respectively.� The interpretation of FasArt as a fuzzy logic sys-
tem permits the use of a defuzzification method
in order to calculate a numeric output. In this
case, the defuzzification method based on the
average of fuzzy set centers is employed. There-
fore, given an input pattern I � �

I1 ��� � � � In � pre-
sented in the test phase, the output is obtained
by:

ym
�
I � � ∑Nb

l � 1 ∑Na

k � 1 cb
lmwab

kl ηRk

�
I �

∑Nb

l � 1 ∑Na

k � 1 wab
kl ηRk

�
I � (3)

3. FUZZY K-NEAREST NEIGHBOR
ALGORITHM

This is the fuzzy version of the fuzzy k nearest neigh-
bor decision rule (Keller et al., 1985) that has been
applied to a lot of problems in several areas. The crisp
nearest-neighbor classification rule assigns an input
sample vector to the class of its nearest neighbor. On
the another hand, the fuzzy k-nearest neighbor algo-
rithm assigns class membership to a sample vector
rather than assigning the vector to a particular class.
In addition, these membership values provide a level
of confidence about the resulting classification.

The basis of the algorithm is to assign membership as
a function of the vector’s distance from its k nearest
neighbors and those neighbors’ memberships in the
possible classes.

FasArt is a supervised system, so the correct outputs
to the inputs must be provided in the learning stage.
In the case being dealt with here, each data set has
several thousand data and several types of faults are
considered and represented as overlapped clusters and
trajectories, so each input must be labeled with mem-
bership values to each kind of fault. Using the fuzzy
k nearest neighbor algorithm this task is done in an
easier way than if the labels are provided by hand. But
this is not a perfect method and it must be revised to
avoid incorrect labellings, but there are not too many
mistakes.

4. FAULT DIAGNOSIS OF AN AC MOTOR

The motor laboratory plant is composed of two Leroy-
Somer induction motors LS132ST with three phases, 4
poles, 28 rotor bars and 36 stator slots with a power of
5.5 Kw each. The power supply frequency is 50 KHz
and there is a delta connection. This motor plant has a
sensor set to get a fine monitoring: the sensors include
those for: voltage, current, temperature, magnetic flux,
optical encoders, etc.

The experiments involved only non destructive faults
due to the economic costs of the destructive tests. 15
different types of faults were tested:� Normal functioning.� Important unbalanced power supply in the three

phases.� Unbalanced power supply in the three phases.� Resistor stator variation (
�

) in the three phases.� Unbalanced mechanical load.� Fault in the angular speed encoder.� Fault in voltage sensor in the three phases.

4.1 Data acquisition and processing

The data sets were acquired by a frequency of 25 MHz
from the sensors in the motor plant. For each fault type
2-4 data sets were obtained, each containing 35000-
40000 sample data of the variables that are used as
inputs to the neuro-fuzzy system. These input vari-
ables are: 3 phase currents (I1 � I2 � I3), 3 phase power
(V1 � V2 � V3) and angular speed (ω). One data set was
employed in the learning stage and the other sets for
testing each fault considered.

In order to improve the performance in the classifi-
cation process, the electrical variables were processed
using their effective values.

4.2 Experimental results

The experiments were carried out as follows: the fault
was generated when the stationary functioning mode
(normal mode) of the motor was reached. Then the
motor returned to normal functioning when possible.

Using the data set generated, as explained in the pre-
vious sections, the neuro-fuzzy system is able to learn
to classify or fault diagnosis at each point of a fault
trajectory throughout its temporal evolution. In the
test stage, the system provides a set of confidential
diagnosis values to each of the fault types considered
for each time point of the trajectory.

Analyzing the output generated by the FasArt module,
this can detect the learnt faults at an early stage, when
the fault is incipient, because in this situation the
confidence output value of the normal functioning is
not the best and/or there are some confidence values
that have similar values to it. Also, a diagnosis time



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.48 0.485  t1 0.49                t2 0.495 0.5         t3 0.505 0.51

C
on

fid
en

ce
 V

al
ue

Time (s)

Normal Mode
Sev. Unbalanced P.S. 3rd

Unbalanced P.S. 3rd

Figure 3. Evolution of FasArt confidence values
throughout a fault evolution. (t1), generation
time, (t2) detection time and (t3) diagnosis time.

is generated when a new best confidence value is
obtained and its value is bigger than the rest of the
fault alternatives. These times can be observed in
Figure 3 as well as the evolution of the functioning
of the motor: normal mode until t1, in this time the
fault is generated and it is detected at t2. Finally
the type of fault is identified at t3. Both times, t1
and t2, are considered on a soft or not too restricted
criterion, so a hard time detection and diagnosis could
be obtained by FasArt if necessary, using a more
restricted criterion.

Three parameters have been chosen to evaluate the
results:� Detection time for each type of fault.� Diagnosis time, which is obtained when a new

best confidence value is obtained and its value is
bigger than the rest of the fault alternatives.� Successful rate of the diagnosis made by the
system. This is the classification generated by the
system for each time value of the input variables
throughout the fault evolution.

The results obtained in the experiments are described
bellow:� Important Unbalanced Power Supply 1st : 0.0013,

0.0232, 100%.� Important Unbalanced Power Supply 2nd: 0.0013,
0.0188, 100%.� Important Unbalanced Power Supply 3rd: 0.0008,
0.0179, 100%.� Unbalanced Power Supply 1st : 0.0013, 0.0202,
15%.� Unbalanced Power Supply 2nd: 0.004, 0.0151,
77%.� Unbalanced Power Supply 3rd : 0.0052, 0.0159,
100%.� Voltmeter 1st : 0.0033, 0.0077, 100 %.� Voltmeter 2nd: 0.0059, 0.0084, 100%.� Voltmeter 3rd : 0.0073, 0.0089, 100%.� �

Stator Resistor 1st : 0.0094, 0.0116, 34%.� �
Stator Resistor 2nd: 0.0075, 0.0103, 100%.� �
Stator Resistor 3rd: 0.0082, 0.011, 100%.

� Encoder: -,-, 0%.� Unbalanced Mechanical Load: -, -. 0%.

Observing these results, there are only two kinds of
fault that are not detected: encode failure and unbal-
anced mechanical load. In this case, it is not possi-
ble to detect by using the real input variables them
because they are confused with normal functioning
mode, i.e., both cluster types are mixed (see Figure
4).

The rest of the faults have early detection and diagno-
sis times. When the fault is classified the rate of suc-
cess is 100%, but “Several Unbalanced Power Supply
2nd” has a 77% success rate and other two faults have
lower rates: “Unbalanced Power Supply in the 1st”, the
fault is confused with “Stator Resistor in the 1st phase”
and “Important Unbalanced Power Supply in the 1st

phase". The second is the “Stator Resistor Variation
in the 1st phase” that has a rate of about 34% and is
confused with the “Normal functioning”. Even so in
these cases in which that the system does not work as
well as the rest of the faults, the diagnosis uncertainty
is limited to two possible fault alternatives.

4.3 Fuzzy rules

Moreover, the knowledge stored by the fuzzy-neuro
nature of the system can be expressed by fuzzy rules.
The set of rules obtained can be summarized in Table
1, which shows that the normal functioning mode can
be explained by using only three fuzzy rules, and
similarly with the rest of the modes or faults. One of
the most significant aspects is the that rules number
for a fault type is different depending of the electrical
phase treated. It could be forced by the electrical
unbalancing of the plant and the constructive aspects
of the motor.

Table 1. Fuzzy database.

Type of failure No of Fuzzy rules
(in each phase)

Normal 3
Important Unbalanced Power Supply 5 (1st ) 7(2nd ) 6(3rd )

Unbalanced Power Supply 3(1st ) 5(2nd ) 3(3rd )
�

Stator Resistor 3(1st ) 4(2nd ) 5(3rd )
Unbalanced Mechanical Load 1

Encoder Failure 1
Voltmeter Failure 2(1st ) 3(2nd ) 3(3rd )

In Figures 4, 5, 6, 7 and 8 some of the fuzzy rules
representing the knowledge learnt by the fuzzy system
can be observed. The antecedent of the fuzzy rule
is one of the fuzzy prototype/neuron of Fa

2 defined
by a set of fuzzy sets, each one for each input sig-
nal, and similarly, the consequence is a Fuzzy pro-
totype/neuron in Fb

2 defined by a set of fuzzy sets,
one for each type of fault considered. In this way the
fuzzy rule in Figure 4 can be interpreted as “Normal
functioning” mainly and, as it has been commented
previously, this mode hides the faults in the “Encoder”
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Figure 5. Fuzzy rule for fault in
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Stator Resistor in
the 3rd phase.

V1

V2

V3

I1

I2

I3

w

Normal

SSupply1

SSupply2

SSupply3

Supply1

Supply2

Supply3

Rª 1

Rª 2

Rª 3

Unba. Mec.

Encoder

Volt. 1

Volt. 2

Volt. 3

Figure 6. Fuzzy rule for fault in Voltmeter in the 2nd

phase.

and the “Unbalanced mechanical load”. In Figure 5
the rule is representative of a fault in the “Stator Resis-
tor in the 3rd phase” because, when the defuzzification
process in this rule is carried out for each fault type,
the confidence values obtained by the other fault alter-
natives are smaller than in the “Stator resistor” case.
Similarly, in Figures 6 and 7, the fuzzy rules describe
faults in the “Voltmeter on the 2nd phase” and “Volt-
meter on the 3rd phase” respectively. A rule about
“Important Unbalanced Power Supply” and “Impor-
tant Unbalanced Power Supply” can be seen in Figure
8.
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phase.
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Figure 8. Fuzzy rule for fault in Important and Soft
Unbalanced Power Supply 1st phase.

5. CONCLUSIONS

The neuro-fuzzy based on the ART theory, FasArt, has
been used to carry out two tasks:� Fault detection and diagnosis of an AC motor.� Extraction of the knowledge by fuzzy rules.

The use of the fuzzy k nearest neighbor algorithm in
the learning stage of the fuzzy system has achieved
a labelling of overlapped fault data. In this way the
system is able to work with the faults at any point of
their trajectories or time evolution.

The results obtained by FasArt model, through its
confidence values for each fault type, have enabled the
majority of the considered fault types to be detected
and a fault diagnosis to be made. The success rate
of classification/diagnosis (about 77% � 100%) and
the detection and diagnosis times (about 10

� 4
� 10

� 3

seconds) provided by this approach for 15 types of
faults, enable actions to be taken to avoid failures or
permanent damage to the motor. Only two types of
fault are not detected or classified, but in the cases in
which the system does not work well (about 15% �

34%), the possible fault alternatives are reduced to two
or three types of the set considered.

Finally, a reduced set of fuzzy rules is extracted from
the neuro-fuzzy system. In this way, the knowledge
learnt and stored in the system can be expressed in



linguistics terms and a better understanding of the
process can be achieved and used in other systems or
tasks.

6. REFERENCES

Abe, S. and M. Lan (1995). Fuzzy rule extraction di-
rectly from numerical data for function approxi-
mation. 25(1), 119–129.

Arnanz, R., L. J. Miguel, E. J. Moya and J. R. Perán
(2000). Model-based diagnostics of AC motors.
In: IFAC Symposium on Fault Detection, Super-
vision and Safety for Technical Processes (SAFE-
PROCESS’2000). Budapest, Hungary. pp. 1145–
1150.

Benbouzid, M. E. H. (1999). Bibliography on induc-
tion motor fault detection and diagnosis. IEEE
Transactions on Energy Conversion 14(4), 1065–
1074.

Cano, J. M., Y. A. Dimitriadis, E. Gómez Sánchez and
J. Coronado López (2001). Learnning from noisy
information in FasArt and fasback neuro-fuzzy
systems. Neural Networks 14(4-5), 407–425.

Chow, M. (1997). Motor fault detection and diagnosis.
IEEE Industrial electronics society News Letter
42, 4–7.

Finley, W. R. and R. R. Burke (1994). Troubleshooting
motor problems. IEEE Transactions on Industry
Applications 30(5), 1383–1397.

Fu, L. (1994). Rule generation from neural networks.
IEEE Transactions on Systems, Man and Ciber-
netics 24(8), 1114–1124.

Keller, J. M., M. R. Gray and Givens J. A. (1985).
A fuzzy k-nearest neighbor algorithm. SMC
15(4), 580–585.

Nandi, S. and H. A. Tolyat (n.d.). Fault diagnosis of
electrical machines - a review. Submitted to IEEE
Transactions on Industry Applications.

Sainz Palmero, G. I., M.J. Fuente Aparicio and I. Pas-
tora Vega (2001). Recurrent neuro-fuzzy model-
ing of a biotechnological process. In: European
Control Conference 2001 (ECC’2001). Oporto,
Portugal. pp. 3822–3827.

Sainz Palmero, G. I., Y. Dimitriadis, J.M.
Cano Izquierdo, E. Gómez Sánchez and E. Par-
rado Hernández (December 2000). ART based
model set for pattern recognition: FasArt family.
In: Neuro-fuzzy pattern recognition (H. Bunke
and A. Kandel, Eds.). World Scientific Pub. Co.

Wang, L. and J. M. Mendel (1992). Generating
fuzzy rules by learning from examples. IEEE
Transactions on Systems, Man and Cybernetics
22(6), 1414–1427.


