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Abstract: The suspension system of a car is of vital importance for the safety of
its occupants. Therefore, it is very important to develop reliable tests for inspecting
the condition of its components. A simple model to identify the parameters of a
car suspension system is proposed in this paper. It is proven that these parameters
are identifiable by using only non-intrusive signals. Unfortunately, the application of
conventional identification methods produces suspension parameters without physical
meaning. The reason is the loss of consistency of the estimators due to the presence
of unknown noise and unmodeled dynamics. In order to avoid this effect, the distance
between the magnitude of the true and the predicted power spectrum density of the
output signal is chosen as the objective to be minimized on a bounded search space
with physical meaning. The optimization problem is solved using the MRCD genetic

algorithm. Promising results have been obtained for several real-world cases.
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1. INTRODUCTION

The suspension system is one of the main com-
ponents for providing safety and comfort for the
occupants of a car. A safe vehicle must be able
to stop and maneuver over a wide range of road
conditions. The suspension system is responsible
for keeping good contact between the tires and
the road. There are many different types of sus-
pension, but all of them share two essential com-
ponents: springs and shock absorbers (dampers).

Springs isolate the driver from road imperfections
by allowing the tire to move over a bump with-
out drastically disturbing the chassis. Springs are

durable items and are easily inspected. Spring
problems are generally easy to identify.

The shock absorber controls spring motion by
damping energy from the spring. Shock absorber
also control the reaction of the body to road
undulations. Shock absorber condition is difficult
to evaluate. The Car Care Council recommends
inspection at 25,000 and every 6,000 miles there-
after Beuently, a shock absorber stops working
without any visible indication.

There are two different types of suspension testing
used today: low frequency, which tests the sus-
pensidn s resistance to chasgamdnbigin



frequency, which measures the suspension’s resis-
tance to excessive wheel hop as well as chassis
movement. The disadvantage of this test is that
the suspension is only checked in a small part of
its operating range.

High frequency testers vibrate the suspension
through the entire range of oscillations that it can
react to. High frequency testers have a plate where
the car is placed. The plate vibrates through a
range of speeds and sensors measure how much the
tire is pressing on the plate at all times. During
the high frequency measurement, the body does
not move, therefore the other three shocks do not
affect the results. The tester is simulating a bumpy
road and measuring how well the suspension keeps
the tire in contact with the tester. The result is
given in a percent adhesion. The higher the per-
centage the more the suspension maintained good
contact with the tester. The adhesion number that
is used is the lowest obtained in the test sequence.

The European Shock Absorber Manufacturers’
Association (EuSAMA) has establised a set of
guidelines for vehicle suspension evaluation and
has defined a type of tester based on the road
adhesion measurement. Many companies produce
machines that meet EuSAMA requirements. The
main disadvantage of EuSAMA suspension testers
is that adhesion is an indicator of the overall
suspension condition, but a poor adhesion num-
ber is not specific enough to recommend shock
replacement.

Therefore, more specific tests for suspension con-
dition need to be developed. These tests should
evaluate not only the overall condition but the
state of each element of the suspension. In this pa-
per, system identification techniques are proposed
to develop improved tests for analyzing suspension
condition.

In order to demonstrate the feasibility of system
identification methods, a simple car suspension
model is proposed and it is proven that their
physical parameters are identifiable by using only
the external or non-intrusive signals measured by
a standard high frequency tester.

The proposed model is a “white box” model be-

cause its parameters are the physical car suspen-
sion parameters, see (Ljung, 1987; S6derstrom and
Stoica, 1989; Nelles, 2001; Johansson, 2001). It
is proved that these physical parameters can be
obtained from the coefficients of the input/output
transfer function, therefore conventional system
identification methods (Ljung, 1987; Ljung, 1988)
could be applied to obtain a fixed structure trans-
fer function and later recover the physical pa-
rameters. However, the application of conven-
tional identification methods produces good mod-
els from the input/output signals point of view

but the equivalent suspension parameters have
no physical meaning. The reason is the loss of
consistency of the estimates due to the unknown
noise and unmodelled dynamics.

In order to avoid this, the identification problem
has been formulated as the minimization of the
error between the magnitudes of the power spec-
trum densities for the real and predicted output
signals. The use of the power spectrum density
instead of the temporal signals is motivated by the
high frequency content of the input/ouput signals
and turns out to be a very good alternative for
this problem. Unfortunately, the system identifi-
cation problem formulated in terms of the power
spectrum density is nonconvex in the parameters
and local optimization methods may not be ap-
propriate.

The global solution of a nonconvex paramet-
ric minimization problem over a bounded search
space can be obtained by using stochastic algo-
rithms. The MRCD genetic algorithm has been
used to solve the proposed problem and gives a
set of good models as solution.

The rest of this paper is organized as follows: Sec-
tion 2 describes the suspension model, and proves
that the physical parameters are identifiable. Sec-
tion 3 analyzes the suspension model for a set of
average nominal values of its parameters. Section
4 formulates the system identification problem as
a minimization problem with respect to the poles
of the proposed model. Section 5 briefly describes
the genetic algorithm used in the solution of the
minimization problem. Finally, several real-world
study cases are presented in Section 6.

2. STATE SPACE AND TRANSFER
FUNCTION EQUATIONS OF THE MODEL

The car suspension system for each wheel is mod-
eled as shown in Figure 1. The total mass m of
the vehicle is considered to be divided into sprung
mass m; and unsprung mass ms = m —m;. These
terms refer to the component motion relative to
the road. Basically, the sprung mass is the body
and the unsprung mass is the wheel. The tire is
modeled as a spring k2 and the suspension as the
parallel combination of a spring k; and a damper
C'. The objective of this article is to estimate these
five parameters with a simple non-intrusive test to
check the state of the suspension system. The non-
intrusive signals used to identify these parameters
are the vertical position changes, input signal d(¢),
and the car weight changes, output signal F'(¢).
These signals are directly obtained with a high
frequency suspension testing machine.

Let p; and p, be the positions of the sprung
and unsprung mass, respectively. The linear dif-



ferential equations relating the input and output
signals, d(t) and F'(t), and the positions, p; and
P2, are:

mip1 = ki(p2 —p1) + C(Pp2 — p1)

maoPs = ki(p1 — p2) + C(p1 — p2) (1)
+k2(d —pz)

F = ky(d—po)

The equations (1) can be converted into a state
&= Ax + Bd
F=Cz+ Dd
variables 1 = p1, 2 = P1, T3 = P2, and x4 = Po,
where
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Next, it will be shown that the five parameters
of the suspension model are identifiable from the
external input and output signals d(t) and F(t).

Theorem 1. Let the total mass of the car m =
my +ma be known, then the five physical parame-
ters my, mo, k1, ko and C of the suspension model
of Figure 1 are identifiable from the external sig-
nals d(t) and F(t).

Proof: The relation between a space state equation
and its equivalent matrix transfer function is given
by

G(s) = C(Is — A)"'B. (3)

The analytical solution of the equation (3) is given
by

_ adj(Is— A)
G(s) = CWB, (4)
my
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Figure 1. Graphic model representation.

where adj(-) is the adjoint matrix. After some
algebra, the result obtained is,
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koC .
by = ko by = w
mimso
b — kaki(mq + mo)
0= mimso
ay = Elm2+m1) (6)
mime
_ my (ki + ko) + moky
m1ms
kaC o kiks
a=——;a=——,
mimso mimeo

Assuming that the signal d(t) is sufficiently excit-
ing, the coefficients of the fixed structure transfer
function G(s) are identifiable.

If the total mass m = my + ms» is known, then the
masses m; and my can be expressed as m; = ma,
ma = m(1l — a), and substituting in 6,

C . _khtk(-a.
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Therefore, the physical parameters can be ob-
tained from the coefficients of the denominator
of the transfer function G(s),

_ ai
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k= agag ma(l — a)

1
C = azgma(l — ).
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Note that the numerator coefficients, that have
not been used in the computation of the physical
parameters, can be used to obtain a measure of
the quality of the parameter estimates.

3. SYSTEM ANALYSIS

In this section, the suspension system modeled by
equations (5) and (6) is analyzed. From the liter-
ature (Dixon, 1996; Bastow, 1987), the following
average nominal values have been selected for the
physical parameters.

m; = 300 Kg, me = 25 Kg,

k1 =2-10* N/m, ky=2-10° N/m, (9)
C =1-10° N-s/m,



The input/output transfer function has two zeros
in the origin, a pair of conjugate complex zeros
and two pairs of conjugate complex poles. The
pair of complex conjugate zeros (w = 20 rad/s)
is related to the damper parameter C. The high
frequency pair of conjugate poles (w = 100 rad/s)
is related to the spring of the wheel ko, and the
low frequency pair (w =~ 10 rad/s) to the spring
of the suspension k;.

The input signal chosen for the suspension pa-
rameter identification, d(t), is a high frequency
vibration signal obtained with an experimental
suspension testing machine. This signal comprises
the entire range of oscillations that the suspension
system can react to. An important drawback of
this input signal is that the parameter k;, respon-
sible the low frequency behavior of the system, is
poorly estimated.

4. IDENTIFICATION PROBLEM
FORMULATION

The identifiability result of Theorem 1 suggests
the application of conventional parametric system
identification techniques, see (Ljung, 1987; Ljung,
1988), to estimate a; and b;, and later obtain
the physical parameters by using the equations
(7). Unfortunately, the results are very sensitive
to noise and neglected dynamic. This has been
checked by solving several simulated examples ex-
cited with the real input signal d(t). The physical
parameters tend to the true values when no distur-
bances are present, but otherwise the results are
deceptive. The module of the real output signal
F(t) is quite similar to the simulated one, but
there is a large phase error. Also the resultant
poles and zeros of the fixed structure estimated
transfer function (5) are far from their expected
values and the suspension parameters have unreal-
istic physical meaning. Motivated by these reasons
and also by the high frequency content of the
input signal the system identification problem is
formulated as follows:

“Find a fixed structure transfer function G(s) (5)
that minimizes the error between the estimated
and real output power spectrum density,

min Ipsd(Frear(t)) — psd(Fese(t))ll2 - (10)

where psd(-) is the signal power spectrum den-
sity”.

From the two pairs of conjugated complex poles of
the transfer function G(s), the coefficients a; (5),
the suspension parameters (8) and the coefficients
b; (6) can be obtained. Thus, the optimization
problem (10) can be formulated as follows: “Find
two pairs of conjugated poles whose associated

fixed structure transfer function G(s, ¢) minimizes
the error between the estimated and real output
power spectrum density,

{1%1(51 ”de(FTeal (t)) - de(Fest (t))”? (11)
where

T
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Usually the search space for the complex poles ¢ is
a region close to the poles obtained for the average
nominal parameter values.

Another alternative is to formulate the optimiza-
tion problem in terms of the physical parameters
{a, k1,k2,C}, but the output signal is not very
sensitive to the parameter k; and the search is
more difficult in this case.

The resultant optimization problem (11) is non-
convex in the search variables ¢ and very difficult
to solve by conventional optimization algorithms.
Therefore, a genetic algorithm, MRCD, has been
applied to solve it.

5. THE MRCD GENETIC ALGORITHM

Genetic algorithms (GAs) are random heuristic
search methods where an initial set of possible
solutions (the so-called population) is modified in
successive steps to converge towards the optimal
solution, see (Goldberg, 1989; Mitchell, 1999).

The MRCD algorithm is a multiobjective genetic
algorithm (Herreros, 2000; Herreros et al., 1999;
Herreros et al., 2000) built to design robust con-
trollers that optimize several objectives at the
same time.

The main advantage of using a multiobjective ge-
netic algorithm for solving the optimization prob-
lem (11) is to obtain the Pareto optimal set in
one step, see (Van Veldhuizen, 1999). However,
the optimization problem (10) has a unique ob-
jective. In order to apply the MRCD algorithm,
a new objective has been introduced. One option
is to repeat the same objective, but in this case
the Pareto optimal set is a single point and the
advantage of the multiobjective methods is not
exploited. The selected option has been to use
the same objective but measured in decibels. This
second objective reduces the importance of the
larger error peaks in the power spectrum density.
In the noise free case there is no difference with
respect to the first option and the Pareto optimal
set is a single point. However, in the presence of
noise and unmodelled dynamics, a true Pareto set
is obtained. The variance of this Pareto optimal



set is a measure of the confidence in the identified
parameters.

6. REAL STUDY CASES

In this section, the results for three real-world
study cases are presented. The same car, a Volvo
460-GLE, has been tested on an experimental high
frequency testing machine with three different tire
pressures (2.2, 2.6 and 3.2 bar).

The search space () for the poles of the optimiza-
tion problem (11) are rectangles in the complex
plane, centered in the poles obtained for the aver-
age nominal values (9).

The results obtained by applying the identifica-
tion procedure explained here are shown in Fig-
ure 2 and Table 1. On the left side of Figure 2
the true and estimated output signals F'(t) are
depicted while on the right side, the estimated
physical parameters for all the elements in the
computed Pareto front are plotted. These param-
eters are associated to one wheel measures. The
mean and variance of these estimated physical
parameters are given in Table 1. The estimated
parameters my, mo and C are very similar in
the three experiments, because their values are
almost independent of the tire pressure. The value
of ko increases with the tire pressure as expected.
However, the value of k; is also affected by it.
The reason may be that the suspension system
is excited by a high frequency input signal that is
not adequate to correctly estimate the parameters
k1 and k9. This is also corroborated by the large
variance values of these parameters.

7. CONCLUSION

The suspension system of a car is very important
for the safety and comfort of the occupants, but
it is difficult to check its state with non-intrusive
tests.

In this article, a simple parametric model and
a system identification procedure have been pro-
posed to obtain the state of the components of the
suspension system. The proposed model is identi-
fiable from non-intrusive input/output signals.

The parameters of the suspension model could
be estimated by conventional system identifica-
tion methods. However, the presence of noise,
neglected dynamics and the high frequency con-
tent of the input signals motivate the substitu-
tion of the temporal error by a frequency error
measured by the difference in magnitude of the
power spectrum density of the output signal. The
resultant optimization problem has been solved
using MRCD, a multiobjective genetic algorithm.

This identification procedure has been extensively
tested with simulated and real-world cases obtain-
ing very promising results. The results presented
here are preliminary and more research needs to
be carried out. The GAs are a good alternative for
solving nonconvex optimization problems, how-
ever they are still rather time consuming and
more efficient methods need to be developed in
order to obtain a good suspension test that could
eventually be implemented in a machine.
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Figure 2. Real and Estimated Time Responses and Estimated Parameter

Table 1. Estimated Car Suspension Parameter Values (mean/variance).
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