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1. INTRODUCTION

The problem of worst–case identification of non–
Schur (i.e marginally stable or unstable) plants has
been addressed several times in the literature (see the
survey by Mäkilä et al. (1995)). All of these papers
pursue a closed-loop approach, where the unknown
plant is prestabilized prior to performing the identi-
fication step.

Under the assumption that a stabilizing controller is
known, one possible approach to solve this problem
uses coprime factorizations of both the unknown sys-
tem and the given controller. By considering the un-
known plant as a member of the set of all plants
stabilized by the assumed controller, the problem can
be reduced to the identification of a stable system,
namely the Youla-Kucera parameter. This approach
was first proposed by Hansen et al. (1989) and later
by Schrama (1991) for MIMO plants in the context
of identification for control. Here the objective was

1 This work was supported in part by NSF under grants ECS-
9907051 and 0115946, and AFOSR under grant F49620–00–1–
0020.

estimating a model of the plant –based on the given a
priori compensator– to design a new controller, in the
former case to minimize some function of the closed-
loop error (since the controller was actually designed
for a model of the system), and as a part of an itera-
tive identification-design procedure in the latter. The
idea was further extended by Dasgupta and Anderson
(1996) to Nonlinear Time Varying plants.

Based on this approach and for a specific choice
of the input to the closed-loop system, Partington
and Mäkilä (1994) showed the existence of robustly
convergent algorithms in the � 1 sense, and obtained
different error bounds between the unstable plant and
the identified model in several metrics, such as the
subspace gap, the projection gap and the graph metric
(see for example (Mäkilä and Partington, 1993) for
definitions and some properties of these metrics.)

In a H∞ setting, Mäkilä and Partington (1992) dealt
with the problem of getting a model of an unstable
system from measurements of the closed-loop stable
transfer function H �� PS, where P is the open-loop
unstable plant and S is the closed-loop sensitivity.
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Under the additional assumption that the unknown
plant is strongly stabilizable, it was shown that it is
possible to guarantee that an approximation Ĥ to the
transfer function H leads to an approximation P̂ to the
unstable plant, which converges in the graph, gap and
chordal metrics as Ĥ approaches the actual closed-
loop transfer function in the H∞ norm.

A common feature of all the approaches mentioned
above, is that they require prior knowledge of a con-
troller that stabilizes the unknown plant. However, this
requirement can be too restrictive, specially in cases
where the plant is not strongly stabilizable (and thus
the controller itself has to be open loop unstable).
To avoid this difficulty, this paper takes a different
approach, directly identifying the plant from some
a priori assumptions and time-domain measurements
of its output over a finite horizon

�
0 � N � . Note that

many practical situations involve plants that are ei-
ther marginally stable or mildly unstable and thus it
is possible to carry time–domain experiments over
reasonably long horizons, without exceeding physical
limits on the plant. Formally, the proposed approach is
similar to the one used by Chen and Nett (1995) and
by Parrilo et al. (1998) for worst–case identification
of stable plants. The main result of this paper shows
that even when used for open–loop unstable plants, the
identification algorithm converges in the � 2–induced
topology as the information is completed, i.e. as the
noise level tends to zero and the number of data
points to infinity. In addition, it provides worst–case
identification error bounds and illustrates how to use
these bounds to synthesize controllers with guaranteed
finite–horizon worst–case performance. Finally, this
work outlines an algorithm for synthesizing stabilizing
controllers for the unknown plant, based on following
the identification step with a model (in)validation one.

The paper is organized as follows. Section 2 presents
the notation and some required results. Section 3 states
the problem and presents the main results. Section 4
illustrates these results with two simple examples. Fi-
nally, Section 5 presents some conclusions and points
out to some issues open for further research.

2. PRELIMINARIES

2.1 Notation

� 2
�
0 � N � denotes the space of square summable real,

one-sided finite sequences x � �
xi � N

i � 0 equipped with
the norm � x � 2�

2
�� ∑N

i � 0 xT
i xi � ∞. Similarly, � ∞

�
0 � N �

denotes the space of bounded sequences equipped
with the norm � x � � ∞ �� supi � 0 � xi � � ∞, and B � ∞ 	 N � ε 

denotes the origin centered ε radius ball in this space.

This paper considers single input-single output (SISO),
discrete-time, finite dimensional, causal, linear time-
invariant (LTI) systems, represented in the frequency
domain by the Z transform H 	 z 
 � ∑∞

k � 0 hkz � k, where
hk denotes the impulse response at k; and in the time

domain by the convolution kernel yk
� 	 h � u 
 k or

alternatively by the infinite lower triangular Toeplitz
matrix mapping input to output sequences:���� y0

y1

y2
...

������ �

���� h0 0 0 �����
h1 h0 0
h2 h1 h0
...

. . .

������
���� u0

u1

u2
...

������ � (1)

TN
h denotes the upper left finite submatrix obtained

from the matrix in (1) of size 	 N � 1 
�� 	 N � 1 
 . This
matrix will be useful while dealing with finite input-
output sequences on the horizon

�
0 � N � .

H∞ � ρ denotes the space of complex–valued functions
essentially bounded on � z � � ρ and with bounded
analytic continuation in � z ��� ρ, equipped with the
usual norm � � � ∞ � ρ �� sup � z � � ρ �H 	 z 
 � � H∞ � ρ 	 K 
 denotes
the open K–ball in H∞ � ρ, i.e.

H∞ � ρ 	 K 
 �� �
f � H∞ � ρ : � f � ∞ � ρ � K � (2)

In the sequel, H∞ and � � � ∞ will be used when ρ � 1.

Let L 	 N 
 denote the space of causal, LTI bounded
operators in � 2

�
0 � N � . ��� � �

2 ! 0 �N " # � 2 ! 0 � N " denotes the
� 2
�
0 � N � induced norm in this space, i.e:� h � �

2 ! 0 � N " # � 2 ! 0 �N " �� sup
u $&% 2 ' 0 ( N )

u *� 0

� 	 h � u 
+� � 2� u � � 2 � (3)

The projection operator PN : L 	 ∞ 
-, L 	 N 
 is defined
by PN

�
h � �� �

h0 � h1 � � � � � hN � 1 � .

Given a subset A of a metric space 	 X � m 
 its diameter
is defined as d 	 A 
 � supx � a . A m 	 x � a 
 and A denotes
its closure. Finally given a matrix M, MT denotes
its transpose, 	 M 
 i its ith row, M† its Moore–Penrose
pseudoinverse, and � M � 1

� maxi ∑ j � 	 M 
 i � j � . As usual
M � 0 (M / 0) indicates that M is positive definite
(positive semi-definite), and M � 0 that M is negative
definite.

2.2 Some Required Results

Lemma 1. (Bounded Real). Consider a proper, finite
dimensional, LTI, stable system h with minimal state
space realization 0

A B
C D 1 �

The the following statements are equivalent:

a.- � h � ∞ � γ.
b.- The following LMI:2

AT XA 3 X � CT C AT XB � CT D
BT XA � DT C BT XB 3 γ2I � DT D4 � 0

admits a symmetric positive solution X � XT � 0.

PROOF. See (Gahinet and Apkarian, 1994). 5



Lemma 2. (Bounded Real, Difference version). Con-
sider a proper, finite dimensional, LTI, stable system h
with minimal state space realization0

A B
C D 1 �

Assume that the following functional LMI admits a
positive semidefinite solution Xk

� XT
k / 0:2

AT Xk
�

1A 3 Xk � CT C AT Xk
�

1B � CT D
BT Xk

�
1A � DT C BT Xk

�
1B 3 γ2I � DT D4 � 0 �

(4)
Then � h � �

2 ! 0 � N " # � 2 ! 0 � N " � γ � (5)

PROOF. Let u � � 2
�
0 � N � denote an arbitrary input

sequence and x � z the corresponding state and output
sequences. Pre and post-multiplying (4) by

�
xT

k uT
k �

and
�
xT

k uT
k � T

, and reordering terms gives:

0 � xT
k AT Xk

�
1Axk � xT

k AT Xk
�

1Buk 3 xT
k Xkxk

uT
k BT Xk

�
1Axk � uT

k BT Xk
�

1Buk 3 γ2uT
k uk

xT
k CT Cxk � xT

k CT Duk � uT
k DT Cxk � uT

k DT Duk

� xT
k
�

1Xk
�

1xk
�

1 � zT
k zk 3 xT

k Xkxk 3 γ2uT
k uk �

Summing this last inequality from k � 0 to k � N and
using the facts that x0

� 0 and Xk � 0 ��� k yields:

0 � xT
N
�

1XN
�

1xN
�

1 � N

∑
k � 0

zT
k zk 3 γ2

N

∑
k � 0

uT
k uk �

N

∑
k � 0

zT
k zk 3 γ2

N

∑
k � 0

uT
k uk � N

∑
k � 0

zT
k zk � γ2

N

∑
k � 0

uT
k uk

which is equivalent to (5). 5
Lemma 3. (Carathéodory-Fejér). Given a sequence�

hk � N
k � 0, and numbers K � 0, ρ � 0, there exists a

complex valued function H 	 z 
 � H∞ � ρ 	 K 
 such that

H 	 z 
 � h0 � h1z � 1 � h2z � 2 � � � � � hNz � N � � � �
if and only if

R2
ρ 3 1

K2 	 TN
h 
 T R2

ρTN
h / 0 � (6)

with Rρ �� diag 	 1 ρ ����� ρN 
 and TN
h defined as in

Section (2.1).

PROOF. See (Parrilo et al., 1998) and references
therein. 5
3. IDENTIFICATION OF NON–SCHUR PLANTS

In this section we present the proposed algorithm,
provide some simple worst-case bounds on the iden-
tification error over the finite horizon and analyze its
convergence properties. We begin by precisely defin-
ing the problem under consideration.

3.1 Problem Statement

Consider the problem of identifying a non Schur plant
h from a set of noisy measurements, over a finite
horizon

�
0 � N � , of the output y to a known but arbitrary

input sequence u � � 2
�
0 � N � :

yk
� 	 h � u 
 k � ηk � k � 0 � 1 � � � � � N (7)

corrupted by additive bounded noise η in the set

N �� � ∞
�
0 � N � 	 ε 
 � (8)

Further, the plant is known to belong to a given set of
candidate models S . This identification problem can
be precisely stated as follows.

Problem 1. Given an unknown non Schur plant, the a
priori sets of candidate models and noise 	 S � N 
 and
a finite set of samples of the input and output of the
plant 	 u � y 
 :� Determine whether the consistency set

T 	 y 
 �� �
h � S : yk 3 	 h � u 
 k � N �

k � 0 � 1 � � � � � N � (9)

is nonempty.� If T 	 y 
��� /0, find a model ĥ � T 	 y 
 .
In the sequel, we consider the following two different
characterizations of the a priori set of models S :

S1
� H∞ � ρ 	 K 
 for some given ρ / 1, K (10)

and
S2 ��
	 h � H∞ � ρ : � hk ��� Kρk ��� k  � (11)

The first case above leads to a computable neces-
sary and sufficient condition for checking consistency,
which as shown next is formally identical to the one
arising in the case of stable models. However, in the
case of unstable plants (as opposed to marginally sta-
ble), it may be difficult to check the validity of this
assumption. On the other hand, condition (11) is eas-
ily testable, since it only involves checking that the
growth of the impulse response 2 is bounded by Kρk.
The trade-off here is that this second condition leads
only to sufficient conditions: feasibility of the LMIs
(13) guarantees consistency of the a priori sets 	 S � N 

and the a posteriori experimental information 	 u � y 
 ,
since S1 � S2.

Notice that the algorithm proposed by Chen and Nett
(1995) and Parrilo et al. (1998) can still be applied
to establish consistency of the data and obtain an
unstable model, since stability of the unknown plant
is used only to obtain worst-case error bounds and
establish convergence. More precisely, there exists at
least one h � S1 which can reproduce the available
experimental data within the assumed error bounds if
and only if equation (6) together with� y 3 TN

u h � � ∞ � ε (12)

2 clearly any other fixed signal can be used here



hold (see Parrilo et al. (1998) for details). A potential
problem here is that the condition number of the
matrix in condition (6) grows as ρ4N 3 . This difficulty
can be solved by noticing that if the LMIs (6)–(12)
hold for some K � ρ � h, then they hold for K � ρ̃ � hρ̃,
where hρ̃ �� �

h0 h1
�
ρ̃ ����� hN

�
ρ̃N � .

Thus, Problem 1 can be solved using the following
scaled LMIs:

R2
ρ
ρ̃
3 1

K2 	 TN
hρ̃

 T R2

ρ
ρ̃

TN
hρ̃
/ 0	 R � 1

ρ̃ y 3 TN
ũ hρ̃ 
�� Nρ̃ � (13)

where Nρ̃ �� �
ηρ̃ : �ηρ̃k � � ε

�
ρ̃k � , TN

ũ
� R � 1

ρ̃ TN
u Rρ̃ and

ρ̃ � ρ, combined with the mapping:

Hid 	 z 
 � Hρ̃ 	 z
ρ̃

 � (14)

When ρ̃ � ρ the algorithm outlined above can be for-
mally interpreted as solving the problem of obtaining
a model of a stable plant hρ̃ � Sρ̃, where:

Sρ̃ �� �
H 	 ρ̃z 
 : h � S � � H∞ � ρρ̃ 	 K 
 � (15)

using the experimental data
�
uk
�
ρ̃k � � �

yk
�
ρ̃k � , cor-

rupted by noise in the set Nρ̃.

3.2 Identification Error and Convergence Properties

The identification procedure proposed in Section 3.1 is
interpolatory since it generates a model in the consis-
tency set T 	 y 
 . Recall that (see for instance (Sánchez
Peña and Sznaier, 1998) and references therein) the
worst–case identification error of an interpolatory al-
gorithm A is bounded by:

eid 	 A 
 �� sup
y . Y

�
sup

g . T � y � � g 3 A 	 y 
 ��� � D 	 I 
 � (16)

where Y is the set of all possible experimental data
consistent with the a priori information 	 S � N 
 , D 	 I 

denotes the diameter of information:

D 	 I 
 �� d 	 T 	 y 
 
 � sup
y

d 	 T 	 y 
 
 (17)

and where the norm of interest in this framework
is the induced � 2

�
0 � N � norm. Moreover, since the a

priori sets 	 S � N 
 are convex and symmetric, with
points of symmetry hs

� 0 and ηs
� 0 respectively,

the worst-case diameter is attained when the available
a posteriori information is the null experiment y0, i.e.

D 	 I 
 � 2 sup
h . T � y0 � � h � � 2 ! 0 � N " # � 2 ! 0 � N " � (18)

Next result provides an upper bound on the induced
� 2
�
0 � N � norm of a system h � S , given an upper

bound on the H∞ norm of the stable system hρ̃ � Sρ̃.
When combined with (16) and (18), it provides an
upper bound on the identification error of the proposed
method over the finite horizon.

3 This follows from the fact that σ̄ � R2
ρ �
	 ρ2N � σ � R � 2

ρ �	 ρ � 2N and
the interlacing property of the eigenvalues of symetric matrices.

Theorem 4. Consider a proper, finite dimensional,
LTI, not necessarily stable system h with minimal state
space realization 0

A B
C D 1 �

Let ρ̃ � 1 be such that the system Hρ̃ 	 z 
 �� H 	 ρ̃z 
 with
state space realization ��

A
ρ̃

B
ρ̃

C D ��
is stable, with � hρ̃ � ∞ � γ. Let u � � 2

�
0 � N � be an

arbitrary input sequence and z its output sequence.
Then � h � �

2 ! 0 � N " # � 2 ! 0 �N " � γ ρ̃N .

PROOF. Since � ρ̃Nhρ̃ � ∞ � γρ̃N , from the Bounded
Real Lemma 1 there exists Xρ̃

� XT
ρ̃ � 0 such that:�

AT
ρ̃ Xρ̃Aρ̃ � Xρ̃ � ρ̃2N CT C AT

ρ̃ Xρ̃Bρ̃ � ρ̃2N CT D
BT

ρ̃ Xρ̃Aρ̃ � ρ̃2N DT C BT
ρ̃ Xρ̃Bρ̃ � γ2ρ̃2N I � ρ̃2N DT D ��� 0

with Aρ̃ �� A
�
ρ̃ and Bρ̃ �� B

�
ρ̃. Define Xk �� Xρ̃ρ̃ � 2k.

Multiplying last inequality by ρ̃ � 2k, it follows that Xk
satisfies the following inequality:�

AT Xk � 1A � Xk � CT C AT Xk � 1B � CT D
BT Xk � 1A � DT C BT Xk � 1B � γ2ρ̃2NI � DT D � �

γ2ρ̃2N � 1 � ρ̃ � 2k � � 0 0
0 I � � � ρ̃2 � N � k � � 1 ��� CT DT � � C

D � � 0  
Since ρ̃ � 1, for k � N the following inequality holds:�

AT Xk � 1A � Xk � CT C AT Xk � 1B � CT D
BT Xk � 1A � DT C BT Xk � 1B � γ2ρ̃2N I � DT D� � 0  

The proof follows now directly from Lemma 2. 5
A simple bound on the identification error over the
finite horizon

�
0 � N � can be obtained by combining

Theorem 4 with the bound provided by (Parrilo et
al., 1998) for the worst case identification error in the
H∞ sense, of exponentially stable plants:

D 	 I 
 � 2ρ̃N ! N

∑
i � 0

νi � K 	 ρ
ρ̃ 
 N � 1

1 3 ρ
ρ̃ " (19)

where νi �� min
�
K 	 ρ � ρ̃ 
 i � � 	 R � 1

ρ T � 1
u Rρ 
 i � 1 � 1ε � and

Tu is the finite Toeplitz matrix associated with the
input sequence u (see (Parrilo et al., 1998) for details).

Next we establish convergence of the algorithm when
N , ∞ and ε , 0.

Theorem 5. If ρ̃ is selected such that Sρ̃ � H∞ then the
proposed algorithm is convergent, i.e.

lim
N # ∞
ε # 0

eid 	 A 
 � 0 � (20)

PROOF. Consider sequences Ni $ ∞, εi % 0, and
for a given 	 N � ε 
 denote by T 	 y0 � N � ε 
 the set
of plants consistent with the a priori information
and the null outcome. Clearly if h � T 	 y0 � N � ε 




then hk � min
� � 	 Tu � 1 
 k � 1ε � Kρk � . It follows that if

Kρk � � 	 Tu � 1 
 k � 1εi then T 	 y0 � N j � ε j 
 � T 	 y0 � Ni � εi 

for j � i and thus using the result in (Aubin and
Frankowska, 1990), page 18, the sequence of sets has
a limit T

� ���
nT 	 y0 � Nn � εn 
 . If T

� �� �
0 � , then there

exists some g
� � T 	 y0 � N j � ε j 
 � � j and such that, for

some M and ξ,� g � � � 2 ! 0 �M " # � 2 ! 0 �M " � ξ � 0 � (21)

Let Tρ̃ 	 y0 � N j � ε 
 � �
g 	 ρ̃z 
 : g 	 z 
 � T 	 y0 � N j � ε 
 � . Since

g
� 	 ρ̃z 
 � Tρ̃ 	 y0 � N j � ε 
 ��� j, using the error bound de-

rived in Parrilo et al. (1998), it follows that there exists
some N � ε such that � g � 	 ρ̃z 
+� ∞ � ξ

ρ̃M . This, combined

with Theorem 4 implies that � g � � � 2 ! 0 �M " # � 2 ! 0 �M " � ξ,
which contradicts (21).

We finish this section by illustrating the use of the
results above to synthesize stabilizing controllers for
the unknown unstable plant. Recall that if a con-
troller is designed to achieve robust performance for
all plants in the transformed consistency set Sρ̃, i.e.
supH . Sρ̃

� Tyw � ∞ � γ, (where w and y denote some in-
put/output pair of signal of interest, such as the track-
ing error to a class of inputs), then it follows that, over
a finite horizon M, this controller guarantees� Tyw � � 2 ! 0 �M " # � 2 ! 0 �M " � ρ̃Mγ (22)

for the actual plant. Thus, the proposed algorithm can
be used directly to identify plants or design controllers
for cases where only the finite horizon behavior is of
interest. An example of this situation is the identifica-
tion, over a finite horizon, of a collection of coupled
harmonic oscillators and the driving of such system
from an initial to a final condition in a given time.
This is a simplified, classical equivalence of a problem
arising in the context of quantum computing, where
it is desired to change the state of some q-bits and
the additional dynamics accounts for the decoherence
resulting from the interaction with the outside world
(Sznaier et al., 2001).

On the other hand, for a finite experiment length N,
both bounds (19) and (22) tend to infinity as M , ∞.
Thus they are not very useful for controller synthesis,
when the goal is to stabilize the (unknown) plant
or guarantee performance over an infinite horizon.
This difficulty can be solved by modelling the actual
plant as the interconnection of the identified plant and
stable dynamic uncertainty (for instance additive) and
performing an additional model (in)validation step to
test the validity of the assumption and to quantify the
size of this uncertainty. Since the proposed algorithm
is convergent, one will expect that this invalidation
will succeed, by taking N large enough and tightening
the bounds in the experimental noise, if necessary. If
that is not the case, the a priori information on the set
of candidate models should be improved.
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Fig. 1. Model vs. plant. top: impulse response, bottom:
step response

4. EXAMPLES

This section illustrates the results with two simple
examples. The first one involves a marginally stable
plant, the second one a plant which is not strongly
stabilizable.

Example 1. Consider the problem of identifying the
marginally stable 	 ρ � 1 
 plant:

S1 	 z 
 � z

z2 � � 2z � 1
� (23)

from a finite set of samples of its impulse response
y � �

y0 y1 ��� � yN � with N � 24, corrupted by additive
noise bounded in amplitude by ε � 0 � 15:

yk
� sk � ηk and �ηk � � ε � (24)

By applying mapping (14) with ρ̃ � 1 � 2, the prob-
lem is reduced to the identification of a stable plant
analytic in � z � � 	 1 � 2 
 � 1. Both the consistency and
identification problems were solved using MATLAB’s
LMI Toolbox, with the additional objective of finding
the minimum value of the worst case gain K so that the
set of LMIs (13) was feasible. Clearly, optimizing over
K yields a smaller H∞ norm of the identified model
and therefore a smaller identification error.

The identification step led a model Ŝ1ρ̃ 	 z 
 with a sta-
bility margin ρ � 0 � 8333 and a minimum gain K �
10 � 1978, of order 25 (as many as the number of sam-
ples considered in the interpolation problem). Before
applying the inverse mapping Ŝ1 	 z 
 � Ŝ1ρ̃ 	 z � ρ̃ 
 , the
stable model was balanced and reduced to avoid nu-
merical problems and a bad behaviour –large peaks in
its impulse response– beyond the finite horizon N. The
resulting model Ŝ1 	 z 
 is unstable and has two complex
poles at p1 � 2 � 3 0 � 7246 � � 3 j0 � 6941:

Ŝ1 	 z 
 � 0 � 0901z2 � 1 � 0448z � 0 � 2002
z2 � 1 � 4492z � 1 � 0068 � (25)

The top plot in Figure 1 shows the impulse responses
of the identified unstable model and the marginally
stable plant, and the original noisy samples. In order
to test the quality of the model, different experiments



over the same finite horizon were performed, compar-
ing the outputs of the actual and identified plants to
inputs not used in the identification step. Due to space
limitations only the results to a step input are shown
in the botton plot of Figure 1.

Example 2. Consider now the problem of getting
a model of the following unstable –not strongly
stabilizable– plant:

S2 	 z 
 � 0 � 25
z � 1

z2 � 0 � 5z 3 1 � 5
(26)

analytic in � z � � ρ � 1 � 5, from noisy measurements
of its impulse response in the interval k � 0 � 1 � � � � � 24.
Applying the mapping (14) with ρ̃ � 1 � 65, the problem
is equivalent to the one of identifying a stable plant,
analytic in � z � � 1 � 5

�
1 � 65 � 0 � 9091. Proceeding as in

previous example, the consistency and identification
steps led to a stable model Ŝ2ρ̃ 	 z 
 with a stability mar-
gin of ρ � 0 � 9091 and a minimum worst case gain of
K � 0 � 4606. Before applying the inverse mapping, the
stable model was balanced and reduced. The resulting
unstable model Ŝ2 	 z 
 is analytic in � z � � 1 � 4895 and
of order 24. A further model order reduction would
have led to a poor model, unable to follow the actual
plant output for different experiments. The top plot of
Figure 2 shows the impulse responses of the model
and the unstable plant, together with the experimental
samples. Finally, the bottom plot of Figure 2 compares
the step responses of the obtained model and the actual
plant on the finite horizon

�
0 � 24 � .

5. CONCLUSIONS

This paper addresses the problem of identifying non
Schur plants in a worst-case sense. Contrary to past
work on this problem, the proposed method is in-
tended to be applied in an open loop setting. Thus it
avoids the need for assumptions, such as the knowl-
edge of a stabilizing controller for the unknown plant,
that can prove to be too restrictive in many practical
situations. The algorithm is interpolatory, and in the
limit as the number of measurements tends to infin-
ity and the noise level to zero, convergent in the � 2

induced topology. Efforts are currently under way to
extend these ideas to the problem of (in)validation of
possible unstable models.
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