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1. INTRODUCTION

Consider a linear homogeneous matrix difference
equation of the form

A(σ)β(k) = 0, k ∈ [0, N ] (1)

A(σ) = Aqσ
q + Aq−1σ

q−1 + . . . + A0 ∈ R[σ]r×r

(2)

where σ denotes the forward shift operator. It
is known from (Antoniou et al. 1998a) that (1)
exhibits both forward and backward behavior
due to the finite and infinite elementary divisors
of A(σ) and not due to its finite and infinite
zeros. Therefore our main interest is to propose
a transformation that will preserve both the fi-
nite and infinite elementary divisors of polyno-
mial matrices. Actually (Pugh and Shelton 1978)
proposed the extended unimodular equivalence
transformation (e.u.e.) which has the nice prop-
erty of preserving only the finite elementary divi-
sors, while (Vardulakis and Antoniou 2001) and
(Karampetakis 2001a) have proposed an exten-
sion of the e.u.e., i.e. strict equivalence and divisor
equivalence respectively, in order to preserve both
the finite and infinite elementary divisors.

The main object of this paper is to prove that
the equivalence relation defined in (Karampetakis
2001a) minus one of the three conditions, pro-
vides necessary and sufficient conditions for the
invariance of the finite and infinite elementary
divisors, and that it is an equivalence relation.

Also we will prove that strict equivalence and
divisor equivalence coincide.

2. PRELIMINARY RESULTS

We define by P (m, l) the class of (r + m) × (r +
l) polynomial matrices where l and m are fixed
integers and r ranges over all integers which are
greater than max (−m,−l) .

Definition 1. Let A(σ) ∈ R[σ]p×m with rankR(s)A(s) =
r ≤ min (p,m) . The values λi ∈ C that satisfy the
condition rankCA(λi) < r are called finite zeros
of A(s). Assume that A (σ) has l distinct zeros
λ1, λ2, . . . , λl ∈ C, and let

Sλi

A(σ) =
[

diag{(σ − λi)mi1 , ..., (σ − λi)mir} 0r,m−r

0p−r,r 0p−r,m−r

]
be the local Smith form Sλi

A(σ) of A(σ) at σ =
λi, i = 1, 2, ..., l where mij ∈ Z+ and 0 ≤ mi1 ≤
mi2 ≤ ... ≤ mir. The terms (σ − λi)mij are called
the finite elementary divisors (f.e.d.) of A(σ) at
σ = λi. Define also as n :=

∑l
i=1

∑r
j=1 mi.

Definition 2. If A0 6= 0, the dual matrix Ã(σ) of
A(σ) is defined as Ã(σ) := A0σ

q +A1σ
q−1 + . . .+

Aq. Since rankÃ(0) = rankAq the dual matrix
Ã(σ) of A(σ) has zeros at σ = 0 iff rankAq < r.
Let rankAq < r and let

S0

Ã(σ)
(σ) =

[
diag{σµ1 , ..., σµr} 0r,m−r

0p−r,r 0p−r,m−r

]
(3)
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be the local Smith form of Ã(σ) at σ = 0
where µj ∈ Z+ and 0 ≤ µ1 ≤ µ2 ≤ ... ≤ µr.
The infinite elementary divisors (i.e.d.) of A(σ)
are defined as the finite elementary divisors σµj of
its dual Ã(σ) at σ = 0. Define also as µ =

∑r
i=1 µi.

We can easily observe from Definition 2 that
A(σ) ∈ R[σ]p×m has no i.e.d. iff rankAq = r
where Aq is the leading degree coefficient matrix
of A(s). Let A1(s), A2(s) ∈ P (m, l) and suppose
∃ rational matrices M(s), N(s) s.t.

[
M(s) A2(s)

] [
A1(s)
−N(s)

]
= 0 (4)

Definition 3. (Pugh and Shelton 1978) If M(s), N(s)
are polynomial matrices and the compound ma-
trices [

M(s) A2(s)
]

;
[

A1(s)
−N(s)

]
(5)

have full rank ∀s ∈ C then Ai(s) are said to be
extended unimodular equivalent (e.u.e).

E.u.e. allows matrices of different dimensions to be
related and preserves the f.e.d.. However it does
not preserve the i.e.d..

Definition 4. (Gantmacher 1959) If M(s), N(s)
are constant, square and nonsingular then the
matrices Ai(s) i = 1, 2 are said to be strict
equivalent (s.e.).

S.e. has the nice property of preserving both the
f.e.d. and i.e.d. of polynomial matrices, note how-
ever that it relates matrices of the same dimen-
sions.

Definition 5. (Karampetakis et al. 1994) If the
compound matrices in (5) have full rank ∀s ∈ C
then Ai(s) are said to be {0}-equivalent.

{0}-equivalence preserves only the f.e.d. of the
form si, i > 0.

It is known (Praagman 1991),(Antoniou et al.
1998b) that the total number of f.e.d. and i.e.d.
(order accounted for) of the polynomial matrix
A(s) defined in (2) is equal to rq where r is
the dimension of the matrix and q is the highest
degree of all the entries of A(s) i.e. n + µ =
rq. Therefore, in order two polynomial matrices
A1(s), A2(s) have the same f.e.d. and i.e.d., they
must have the same total number of f.e.d. and
i.e.d. or otherwise the same product rq i.e. r1q1 =
r2q2. For this reason we define the following set of
polynomial matrices

Rc[s] := {A(s) defined in (2) with c = rq, r ≥ 2}
(6)

Definition 6. (Karampetakis 2001a) If the com-
pound matrices in (5) satisfy the following three
conditions

(i) they have full rank and no f.e.d.,

(ii) they have no i.e.d.,

(iii) the following degree conditions are satisfied

d
[
M(s) A2(s)

]
≤ d [A2(s)] ; d

[
A1(s)
−N(s)

]
≤ d [A1(s)]

where d[P ] denotes the degree of P (s) seen as
a polynomial with nonzero matrix coefficients,
then A1(s), A2(s) ∈ Rc[s] are said to be divisor
equivalent (d.e.).

D.e. preserves both the f.e.d. and i.e.d. (Karampetakis
2001a). However it is not known if d.e. a) is an
equivalence relation and b) provide us with neces-
sary conditions in order two polynomial matrices
possess the same f.e.d. and i.e.d.. We don’t know
also the exact meaning of the degree conditions
appearing in the definition of d.e..

The following lemma is required in the subsequent
proofs.

Lemma 7. If A1(s), A2(s) ∈ Rc[s] are d.e. and
A2(s), A3(s) ∈ Rc[s] are s.e., then A1(s), A3(s) ∈
Rc[s] are d.e..

Proof. It is easily seen using the same reasoning
with Lemma 5.5.2 of (Walker 1988). 2

Let A(s) as defined in (2). Then the pencil

sE−A :=


sIr −Ir 0 · · · 0 0
0 sIr −Ir · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · sIr −Ir

A0 A1 A2 · · · Aq−2 sAq + Aq−1


(7)

is shown in (Karampetakis 2001a) that is d.e. to
A(s) and vice versa.

3. STRUCTURAL PROPERTIES OF D.E.

In what follows we will prove i) that the degree
conditions imposed by d.e. are not needed and ii)
that d.e. provide us with necessary and sufficient
conditions in order for two polynomial matrices
to possess the same f.e.d. and i.e.d.. The following
technical relationships are required in the subse-
quent proofs.



Lemma 8. Let A1(s) and A2(s) ∈ Rc[s] with di-
mensions m × m and (m + r) × (m + r) respec-
tively where r 6= 0. Then the first two conditions
of d.e. implies the degree conditions of d.e. i.e.
deg M(s) ≤ deg A2(s) and deg N(s) ≤ deg A1(s)

Proof. Assume that ∃M(s) with deg M(s) >
deg A2(s). In order for

[
M(s) A2(s)

]
to have

no i.e.d its highest coefficient matrix must be
of full row rank i.e. rank

[
Mhc 0

]
= m + r.

This is impossible since Mhc ∈ R(m+r)×m. So
deg M(s) <= deg A2(s).

Let deg N(s) > deg A1(s). Then ∃d <> 0 s.t.
deg A1(s)+d = deg N(s). Condition (i) of d.e. im-
plies that the matrices A1(s) and A2(s) are e.u.e.
so they have the same f.e.d. (and of course the
same number of f.e.d. i.e. SR (A1(s)) = SR (A2(s))
where SR(A(s)) denotes the total number of f.e.d.
of A(s) (order accounted for)).Taking the duals of
the compound matrices we get[

M
′
(w) Ã2(w)

] [
wdÃ1(w)
−Ñ(w)

]
= 0 (8)

(8) is a {0}-equivalence relation and thus Ã2(w)

and wdÃ1(w) have the same f.e.d. at 0. Denoting
by Sl(A(w)) the total number of f.e.d. (order
accounted for) at l of A(w) we have

S0(Ã2(w)) = S0(wdÃ1(w)) > S0(Ã1(w)) =⇒
S0(Ã2(w)) > S0(Ã1(w)) =⇒
=⇒ S∞(A2(s)) > S∞(A1(s)) (9)

According to our assumption A1(s), A2(s) ∈ Rc[s].
Thus c = S∞(A2(s)) + SR(A2(s)) = S∞(A1(s)) +
SR(A1(s)) or equivalently since SR(A2(s)) =
SR(A1(s)) we have that S∞(A2(s)) = S∞(A1(s)) which
contradicts with (9). 2

In the above discussion we proved that it is
impossible to find transforming matrices of d.e.
M(s) ∈ R(m+r)×m[s], N(s) ∈ R(m+r)×m[s] with
deg M(s) > deg A2(s) or deg N(s) > deg A1(s).
The latter is not the case when r = 0.

Lemma 9. Let A1(s) and A2(s) ∈ Rc[s] having the
same dimensions m × m and therefore the same
degree d. If A1(s), A2(s) satisfies (4) and the first
two conditions of d.e. then deg M(s) = deg N(s).

Proof. First we will prove that if one of the chosen
transforming matrices has degree more than d
then deg M(s) = deg N(s). Let

dM = deg M , dN = deg N

DL = deg
[
M(s) A2(s)

]
; DR = deg

[
A1(s)
−N(s)

]
d = deg A1(s) = deg A2(s)

Then

˜[
M(s) A2(s)

]
=

[
wdM+DLM̃(w) wd+DlÃ2(w)

]
˜[
A1(s)
−N(s)

]
=

[
w−d+Dr Ã1(w)
w−dN+DrÑ(w)

]
¿From (4) taking the duals gives[

w−dM+DLM̃(w) w−d+DlÃ2(w)
] [

w−d+Dr Ã1(w)
w−dN+DrÑ(w)

]
= 0

(10)
Then{

S0(w−dM+DLM̃(w)) = S0(w−dN+DrÑ(w))
S0(w−d+DlÃ2(w)) = S0(w−d+Dr Ã1(w))

}
⇒

S∞M(s) + (−dM + DL)m = S∞N(s) + (−dN + DR)m
(11)

S∞A2(s) + (−d + DL)m = S∞A1(s) + (−d + DR)m
(12)

Also (4) is an e.u.e. relation and

SRM(s) = SRN(s) ; SRA2(s) = SRA1(s) (13)

But since A1(s) and A2(s) ∈ Rmxm
c [s] we have

S∞A1(s) + SRA1(s) = S∞A2(s) + SRA2(s)
(12)
=⇒
(14)

SRA1(s) + S∞A2(s) + (−d + DL)m−

−(−d + DR)m = S∞A2(s) + SRA2(s)
(13)
=⇒

DL = DR (15)

Using (11) and (15) the following equation holds

S∞M(s)− S∞N(s) = (dM − dN )m (16)

Equation (15) tells us that if dM > d or dN > d
then dM = DL = DR = dN .

In the second part of the proof we will show
that if one of the chosen transforming matri-
ces has degree less than d then deg M(s) =
deg N(s).Suppose that N(s) has degree dN such
that dN (s) < dM (s) ≤ d. Then

MhcAhc
1 = 0 (17)

where Ahc denotes the highest coefficient matrix
of the polynomial matrix A(s). Note that from
the first part of the proof if one of the matrices
has degree less than d then the other one can-
not have degree more than d. Since dN (s) < d
we have that Ahc

1 has full rank and therefore
dim(Ker(Mhc)) = m. Thus rank(Mhc) = 0 and
therefore deg M(s) < dM which contradicts with
our second assumption. 2

Lemma 10. If A1(s)(s − s0)k ∈ Rm×m[s] has the
same f.e.d. and i.e.d. as A2(s)(s−s0)k ∈ Rm×m[s],
where s0 6= 0 is not a zero of either A1(s) or A2(s),
then A1(s) and A2(s) have the same f.e.d. and
i.e.d..



Proof. The proof is trivial having in mind that
the i.e.d. of A1(s)(s − s0)k ∈ Rm×m[s], where
s0 6= 0 is not a zero of A1(s), are exactly the i.e.d.
of A1(s). The f.e.d. of A1(s)(s−s0)k are the f.e.d.
of A1(s) plus m divisors of the form (s−s0)k. 2

Now we are able to restate the definition of d.e.
with only two conditions.

Definition 11. Two matrices A1(s), A2(s) ∈ Rc[s]
are said to be divisor equivalent (d.e.) if there exist
polynomial matrices M(s), N(s) of appropriate
dimensions, such that equation (4) is satisfied
where the compound matrices in (5) have full rank
and no f.e.d. nor i.e.d..

Some nice properties of d.e. are given in the
following Theorem.

Theorem 12. A1(s), A2(s) ∈ Rc[s] are d.e. iff they
have the same f.e.d. and i.e.d..

Proof. Sufficiency. Let A1(s) ∈ R[s]m×m and
A2(s) ∈ R[s](m+r)×(m+r) with r 6= 0. Then
according to Lemma 8 deg M(s) ≤ deg A2(s)
and deg N(s) ≤ deg A1(s). Therefore A1(s), A2(s)
possess the same f.e.d. and i.e.d. (Theorem 3,
(Karampetakis 2001a)).

Let A1(s), A2(s) ∈ R[s]m×m with the same degree
d. Then according to Lemma 9 dt = deg M(s) =
deg N(s). In case where d ≤ dt then the proof is
the same with the one presented in Theorem 3
of (Karampetakis 2001a). Consider now the case
where dt > d. Let s0 6= 0 not a zero of either A1(s)
or A2(s). Then[
M(s) A2(s)(s− s0)dt−d

] [
A1(s)(s− s0)dt−d

−N(s)

]
= 0

(18)
is an e.u.e. relation which means that A2(s)(s −
s0)dt−d and A1(s)(s−s0)dt−d have the same f.e.d..
Therefore according to Lemma 10, A1(s) and
A2(s) have the same f.e.d.. Taking the duals of
(18) we have[

M̃(s) A ˜
2(s)(s− s0)dt−d

] [
˜A1(s)(s− s0)dt−d

−̃N(s)

]
= 0

(19)
(19) is a {0}-equivalence relation, so

˜A2(s)(s− s0)dt−d and ˜A1(s)(s− s0)dt−d

have the same f.e.d. at 0 and thus A2(s)(s −
s0)dt−d and A1(s)(s−s0)dt−d have the same i.e.d.
i.e. A2(s) and A1(s) have the same i.e.d..
Necessity. Assume that A1(s), A2(s) ∈ Rc[s]
have identical f.e.d. and i.e.d.. Then according to
(Karampetakis 2001a) A1(s) and A2(s) are d.e.
to matrix pencils sE1 − A1 and sE2 − A2 of the
form (7) and vice versa. The pencils sE1−A1 and

sE2 − A2 are also strict equivalent to their re-
spective Weierstrass forms let W (sE1 −A1) and
W (sE2 −A2) . Since sE1 − A1,sE2 − A2 ∈ Rc[s]
and share the same f.e.d. and i.e.d. they have
the same Weierstrass form, let sEw − Aw ≡
W (sE1 −A1) ≡ W (sE2 −A2). Repeated use
of the transitivity property proved in Lemma 7
shows that A1(s) is divisor equivalent to sE2−A2.
This argument is summarized in Figure 1.

A1(s)

sEw-Aw

sE2-A2

A2(s)

d.e

sE1-A1

d.e

s.e s.e

d.e

Lem. 7
d.e

Lem. 7

 
Figure 1.

Therefore ∃A(s), B(s) s.t. the following transfor-
mation :

A(s) (sE2 −A2) = A1(s)B(s) (20)

is a d.e. transformation. The polynomial matrices
sE2 − A2 and A2(s) are also connected through
the d.e. transformation (Karampetakis 2001a),(

0
kI

)
A2(s) = (sE2 −A2) (kL(s)) (21)

where k = (s − s0), s0 6= 0 not a zero of either
A2(s) or (sE2 −A2) and L(s) :=

(
I sI · · · sq2−1I

)T

and q2 = d [A2(s)]. Premultiplying (21) by A(s)
and then using (20) we get{

A(s)
(

0
kI

)}
A2(s) = A1(s) {B(s) (kL(s))}

(22)
In order to keep the notation as simple as possible
in (22) we divide both sides with k and thus we
get[

A(s)
(

0
I

)
A1(s)

] [
A2(s)

−B(s)L(s)

]
= 0 (23)

In order to prove the absence of f.e.d. and i.e.d.
of the compound matrices in (23), it is enough to
prove that they possess the same f.e.d and i.e.d.
respectively with[

A(s) A1(s)
]

and
[

sE2 −A2

−B(s)

]
which have neither f.e.d. nor i.e.d., according to
the d.e. transformation (20).
(i) Our first goal is to prove that the matrices[

sE2 −A2

−B(s)

]
and

[
A2(s)

−B(s)L(s)

]
(24)

possess the same f.e.d. and i.e.d..
(i-a) - Same f.e.d.. Consider the transformation (

0
I

)
0 sE2 −A2

0 I −B(s)

 A2(s)
−B(s)L(s)
−L(s)

 = 0



It is easily seen that both compound matrices of
the above transformation include the unit matrix
and therefore does not possess f.e.d.. Therefore
the matrices (24) are e.u.e. and thus the matrices
in (24) have the same f.e.d..
(i-b) - Same i.e.d. Consider the transformation (

0
kI

)
0 sE2 −A2

0 kI −B(s)

 A2(s)
−B(s)L(s)
−L(s)k

 = 0

(25)
The highest coefficient matrices of the above com-
pound matrices are

0
0
...
0
I

0
0
...
0
0

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0
0 0 · · · 0 Aq2

0 I −B1


,

 A2,q2

−B1L
−L



respectively, where L =
(
0 0 · · · I

)T
, B(s) =

B0 +B1s and A2(s) = A2,0 +A2,1s+ · · ·+A2,q2s
q2

with A2,q2 6= 0. It is easily seen that the above
highest degree coefficient matrices have full row
and column rank respectively and therefore the
compound matrices in (25) have no i.e.d. and thus
the matrices in (24) possess the same i.e.d..
(ii) Our second goal is to prove that the matrices[

A(s)
(

0
I

)
A1(s)

]
and

[
A(s) A1(s)

]
(26)

possess the same f.e.d. and i.e.d..
(ii-a) Same f.e.d. Consider the transformation

I

[
A(s)

(
0
I

)
A1(s)

]
=

[
A(s) A1(s)

]  (
0
I

)
0

0 I


We observe that both compound matrices of the
above transformation include the unit matrix and
therefore does not possess f.e.d.. Therefore the
matrices (26) are e.u.e. and thus have the same
f.e.d..
(ii-b) Same i.e.d. Consider the transformation

[
kq1I A(s) A1(s)

]


A(s)
(

0
I

)
A1(s)

−
(

0
kq1I

)
0

0 −kq1I

 = 0

where A(s) = A0+A1s+ · · ·+Aq1s
q1 and A1(s) =

A1,0 + A1,1s + · · ·+ A1,q1s
q1 with A1,q1 6= 0. The

highest coefficient matrices (h.c.m.) of the above
compound matrices are :

[
I Aq1 A1,q1

]
and


Aq1

(
0
I

)
A1,q1

−
(

0
I

)
0

0 −I


It is easily seen that the above h.c.m. have full
row and column rank respectively and therefore

the compound matrices in (25) have no i.e.d.. So
the matrices (26) possess the same i.e.d..
N.B. It is possible to start with the matrix A2(s)
and follow identical arguments to yield a transfor-
mation of d.e. between A2(s) and A1(s) which is
symmetric to (23). 2

Remark 13. Note that the proof of the sufficiency
of above theorem is independent of the class of
polynomial matrices. Therefore in case where we
define divisor equivalence on the set P (m, l) of
polynomial matrices, instead of Rc(s), the prop-
erty of the invariance of the finite and infinite el-
ementary divisors still remains. However we don’t
know if in that case the converse of the above
theorem, still remains true, due to the extra in-
variants of the polynomial matrices i.e. left and
right minimal indices.

Remark 14. In case where (4) is a d.e. rela-
tion then it is easily seen that the relation
A2(s)N(s) = M(s)A1(s) is also a d.e. rela-
tion. Therefore according to Theorem 12 and
Remark 13 the nonregular polynomial matrices
M(s), N(s) have the same f.e.d. and i.e.d.. ¿From
(4) we get the relation G(s) := A2(s)−1M(s) =
N(s)A1(s)−1. Thus in case where we are able to
construct a left and right matrix fraction descrip-
tion of a rational matrix G(s), s.t. the compound
matrices defined in (5) have full rank and no f.e.d.
or i.e.d., then the numerators M(s), N(s) (resp.
denominators A1(s), A2(s)) will have the same
f.e.d. and i.e.d.

Theorem 15. D.e. is an equivalence relation on
Rc[s].

Proof. (i) Reflexivity. Let A(s) ∈ Rc[s] and
consider the following relation

[
(s− s0)

d[P ]
I A(s)

] [
A(s)

− (s− s0)
d[P ]

I

]
= 0

where s0 is not a zero of A(s). It is easily proved
that the above transformation is a d.e. transfor-
mation.
(ii) Symmetry. Let A1(s), A2(s) ∈ Rc[s] be related
by a d.e. transformation of the form

M(s)A1(s) = A2(s)N(s) (27)

Then A1(s) and A2(s) have identical f.e.d. and
i.e.d.. Hence there exists a relation of d.e. of the
form (23) i.e a relation symmetric to (27).
(iii) Transitivity. Suppose that A1(s), A2(s) ∈
Rc[s] are d.e. and that A2(s), A3(s) ∈ Rc[s] are
d.e.. Then A1(s) and A3(s) have identical f.e.d.
and i.e.d.. Hence A1(s) and A3(s) are d.e. accord-
ing to Theorem 12. 2



4. ON THE CONNECTION OF D.E. AND
STRICT EQUIVALENCE

Definition 16. (Vardulakis and Antoniou 2001)
A1(s) and A2(s) ∈ Rc[s] are called strictly equiv-
alent iff their equivalent matrix pencils sE1 −
A1 ∈ Rc×c and sE2 − A2 ∈ Rc×c proposed in
(7), are strictly equivalent (Definition 4).

The coincidence of divisor and strict equivalence
is proved in the following Theorem.

Theorem 17. Strict equivalence (Definition 16)
belongs to the same equivalence class with d.e..

Proof.

(⇐=)Suppose that A1(s),A2(s) are d.e.. Then

sE1 −A1

d.e
˜ A1(s)

d.e
˜ A2(s)

d.e
˜ sE2 −A2

Therefore from the transitivity property of d.e.

sE1 − A1

d.e
˜ sE2 − A2 and since d.e. coincides

with strict equivalence in pencils (Karampetakis
2001a), the two pencils are strict equivalent.
(=⇒)Suppose that A1(s) and A2(s) are strict
equivalent. Then

A1(s)
d.e
˜ sE1 −A1

d.e
˜ sE2 −A2

d.e
˜ A2(s)

Then from the transitivity property of d.e. A1(s)
d.e
˜ A2(s). 2

A geometrical meaning of d.e. is given in the
sequel.

Definition 18. (Vardulakis and Antoniou 2001)

Two AR-representations

Ai (σ) ξi
k = 0, k = 0, 1, 2, ..., N

where σ is the shift operator, Ai(σ) ∈ R[σ]ri×ri ,
i = 1, 2 will be called fundamentally equivalent
(f.e.) over the finite time interval k = 0, 1, 2, ..., N
iff there exists a bijective polynomial map between
their respective behaviors BA1(σ),BA2(σ).

Theorem 19. D.e. implies f.e..

Proof. ¿From (4) we have

M(σ)A1(σ) = A2(σ)N(σ) (28)

By multiplying (28) on the right by ξ1
k we get

M(σ)A1(σ)ξ1
k = A2(σ)N(σ)ξ1

k =⇒ 0 = A2(σ)N(σ)ξ1
k =⇒

∃ξ2
k ∈ BA2(σ) s.t. ξ2

k = N(σ)ξ1
k (29)

According to the conditions of d.e.,
[
A1(σ)T −N(σ)T

]T

has full rank and no f.e.d. or i.e.d.. This implies
(Karampetakis 2001b) that ξ1

k = 0. Therefore the
map defined by the polynomial matrix N(s) :
BA1(s) → BA2(s) | ξ1

k 7→ ξ2
k is injective. From

the symmetric d.e. transformation M̂(s)A2(s) =
A1(s)N̂(s) in a similar way we get that the map
defined by the polynomial matrix N̂(s) : BA2(s) →
BA1(s) | ξ2

k 7→ ξ1
k is injective. Therefore both maps

are bijections between BA1(σ),BA2(σ). 2

5. CONCLUSIONS

The problem addressed in this paper is the restate
of the divisor equivalence relation presented in
(Karampetakis 2001a). We have shown that this
redefined transformation with one condition less,
provide us with necessary and sufficient conditions
for the invariance of the f.e.d. and i.e.d..
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