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Abstract: The main purpose of this work is to construct the forward and backward
solution space of a nonregular discrete time AR-representation i.e. A(σ)ξ(k) = 0, in
a closed interval [0, N ] where A(σ) is a polynomial matrix and σ is the forward shift
operator. The construction of the behavior is based on the structural invariants of the
polynomial matrix which describe the AR-representation, i.e. the finite and infinite
elementary divisors and the right minimal indices of A(σ).
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Consider a system of linear homogeneous differ-
ence and algebraic equations described in matrix
form by :

A (σ) ξk = 0 (1)

where σ denotes the forward shift operator i.e.
σξk = ξk+1, A (σ) = A0 + A1σ + · · · + Aqσ

q ∈
R [σ]p×m with rankR(σ)A (σ) = r ≤ min (p, m)
and ξk : [0, N ] → Rm. We call the set of equations
(1) an AR-Representation of BD (behavior) where
BD is defined as :

BD :=
{

ξk : [0, N ] → Rm

(1) is satisfied ∀k ∈ [0, N ]

}
In case where A(σ) is regular the solution vector
space of (1) consists of rq i.e. the total number
of finite and infinite elementary divisors (order
accounted for), linearly independent forward and
backward solutions (Antoniou et al., 1998). In
case now where A(σ) is nonregular, the space
BD contains a number of linear independent for-
ward and backward solutions that depends on
N and are due to the right null space of A(σ)
(Karampetakis, 2001). If we now correspond all

the forward and backward solutions which are due
to a specific boundary value (initial-final condi-
tion) to an element [ξk] then the behaviour space
BD is divided into equivalence classes and a new
space is created, named B̂D, whose dimension is
proved to be the total number of the finite ele-
mentary divisors (n), infinite elementary divisors
(µ), plus two times the right minimal indices (ε)
of A(σ) (order accounted for) i.e. n + µ + 2ε
(Karampetakis, 2001). In this paper we give a
specific construction of the solution cpace B̂D by
finding n + ε linearly independent forward solu-
tions representatives due to the finite elementary
divisors and the right minimal indices of A(σ) and
µ+ ε linearly independent backward solution rep-
resentatives due to the infinite elementary divisors
and the right minimal indices of A(σ). Finally, the
construction of the basis that produces the space
B̂D helps us to construct additionally the space
BD.

1. PRELIMINARY RESULTS

Applying the Z transform of ξ (k) given by

(Freeman, 1965) i.e. ξ (z)
def
= Z [ξ (k)] =

∑N
k=0 ξ (k) z−k

to (1) we get :
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A (z) ξ (z) =
[
zqIp · · · zIp Ip

]
×

×


Aq 0 · · · 0

Aq−1 Aq · · · 0
...

...
. . .

...
A1 A2 · · · Aq




ξ (0)
ξ (1)

...
ξ (q − 1)

+

+
[
z−NIp · · · z−N+q−2Ip z−N+q−1Ip

]
×

×


A0 0 · · · 0
A1 A0 · · · 0
...

...
. . .

...
Aq−1 Aq−2 · · · A0




ξ (N)
ξ (N − 1)

...
ξ (N − q + 1)


=: (zqIp)<q ξ̃ (0) +

(
z−NIp

)
<0ξ̃ (N) (2)

Let also a right minimal polynomial basis 1

consisted by the following polynomial vectors

ũi (σ) := ũi,0 + ũi,1σ + · · ·+ ũi,εi
σεi

i = r + 1, r + 2, ...,m

Then the rational vectors of the form

ûi (σ) := ũi,0
1

σεi
+ ũi,1

1
σεi−1

+ · · ·+ ũi,εi (3)

i = r + 1, r + 2, ...,m

still constitutes a right minimal proper basis of
A (σ). Let now

X =



ξ (k) : ξ̃ (0) ∈ Ker[<q]
and ξ̃ (N) ∈ Ker[<0]

ξ (k) =
k∑

i=0

ûr+1 (i) z1 (k − i) +

+ · · ·+
k∑

i=0

ûm (i) zm−r (k − i)


where zi (k) , i = 1, 2, ...,m − r are arbitrary dis-
crete time functions and ûi (k) = Z−1 [ûi (z)] , i =
r+1, ...,m, be the solution space of (1) (Karampetakis,
2001) which comes under the above specific initial-
final conditions.

Define now the following relation R between the
solutions of BD

R (ξ1 (k) , ξ2 (k)) := (4)

=
{

(ξ1 (k) , ξ2 (k)) : ξ1 (k)− ξ2 (k) ∈ X
where ξ1 (k) , ξ2 (k) ∈ BD

}
Then the relation (4) defines an equivalence rela-
tion (Karampetakis, 2001). We call an equivalence
class of the element ξ (k) ∈ BD, and we denote

1 For the simplicity of the proofs of the main Theorems

we give a specific construction of the minimal polynomial

basis in (7), although in practice other constructions may
also be used i.e. (Beelen, 1987).

this with [ξ (k)]R, the set of all the elements of
BD which are equivalent to ξ (k) or equivalently

[ξ (k)]R := ξ (k)⊕X (5)

We can see that any equivalence class of an ele-
ment ξ (k) gives all the solutions of (1) under some
specific initial-final conditions. In the case where
A (σ) has no right kernel then every equivalence
class is composed either by a unique element or
no element (due to left null space) contrary to the
nonregular case where to each equivalence class
corresponds an arbitrary number of elements of
BD. We conclude therefore, that BD is divided
into equivalence classes which are defined by (5).
Define now the following sum and product be-
tween equivalence classes of the form (5) :

[ξ1 (k)]R + [ξ2 (k)]R : = [ξ1 (k) + ξ2 (k)]R
λ [ξ (k)]R = [λξ (k)]R λ ∈ R

Theorem 1. (Karampetakis, 2001) The space which
is spanned by the equivalence classes defined in (5)
is a vector space B̂D := BD/R and has dimension

f := dim B̂D = n + µ + 2ε

In the following section we shall try to determine
a basis for the vector space B̂D in terms of the
structural invariants of the polynomial matrix
A(s) and thus to find out the solution space BD.

2. CONSTRUCTION OF THE BEHAVIOR OF
A DISCRETE TIME AR-REPRESENTATION

In this section we shall try to define n linearly
independent forward solutions of (1) due to the
finite elementary divisors of A(s), µ linearly in-
dependent backward solutions of (1) due to the
infinite elementary divisors of A(s), ε linearly in-
dependent forward solutions of (1) due to the right
minimal indices of A(s) and ε linearly independent
backward solutions of (1) due to right minimal
indices of A(s).

2.1 Finite elementary divisors and solutions of
discrete time AR-representations

Let us assume that A (σ) has k distinct eigenval-
ues λ1, λ2, ..., λk where for simplicity of notation
we assume that λi ∈ R, i ∈ k and let

UL (σ)A (σ)UR (σ) = (6)
= blockdiag [Iz−1, fz (σ) , fz+1 (σ) , ..., fr (σ) , 0p−r,m−r]



1 ≤ z ≤ r be the Smith form of A (σ) (in C)
where fi (σ) ∈ R [σ] are the invariant polynomials
of A (σ) and fi (σ) /fi+1 (σ) i = z, z + 1, ..., r −
1. Assume that the partial multiplicities of the
eigenvalues λi ∈ R, i ∈ k are 0 ≤ σi,z ≤
σi,z+1 ≤ · · · ≤ σi,r. Let uj (σ) ∈ R [σ]m×1

, j ∈
R be the columns of UR (σ) and u

(q)
j (σ) :=

(dq/dsq)uj (σ) , q = 0, 1, ..., σi,j − 1. Let also

xi
j,q :=

1
q!

u
(q)
j (λi) i ∈ k and j = z, z + 1, .., r

Define the vector valued functions

if λi 6= 0

ξi
j,q (k) := λk

i xi
j,q + · · ·+

(
k
q

)
λk−q

i xi
j,0

i ∈ k ; j = z, z + 1, ..., r ; q = 0, 1, ..., σi,j − 1

if λi = 0

ξi
j,q (k) := ∆(k)xi

j,q + · · ·+ ∆(k − q)xi
j,0

i ∈ k ; j = z, z + 1, ..., r ; q = 0, 1, ..., σi,j − 1

Let

Ψi,j (k) :=
[
ξi
j,0 (k) ξi

j,1 (k) · · · ξi
j,σi,j−1 (k)

]
Ci,j :=

[
xi

j,0 xi
j,1 · · · xi

j,σi,j−2 xi
j,σi,j−1

]

Ji,j :=


λi 1 · · · 0 0
0 λi · · · 0 0
...

...
. . .

...
...

0 0 · · · λi 1
0 0 · · · 0 λi

 ∈ Rσi,j×σi,j

i ∈ k ; j = z, z + 1, ..., r

and

ΨF
i (k) :=

[
Ψi,z (k) Ψi,z+1 (k) · · · Ψi,r (k)

]
CF

i :=
[
Ci,z (k) Ci,z+1 (k) · · · Ci,r (k)

]
JF

i := blockdiag
[
Ji,z (k) Ji,z+1 (k) · · · Ji,r (k)

]
where mi := σi,z + σi,z+1 + · · ·σi,r i ∈ k. Finally
let

ΨD
F (k) :=

[
ΨF

1 (k) ΨF
2 (k) · · · ΨF

k (k)
]

CD
F :=

[
CF

1 (k) CF
2 (k) · · · CF

k (k)
]

JD
F := blockdiag

[
JF

1 (k) JF
2 (k) · · · JF

k (k)
]

where n := deg
[∏r

j=z fj (σ)
]

= deg
∣∣∣SC

R(σ)

∣∣∣ .Then
we have the following

Theorem 2. The columns of the following matrix

ΨD
F (k) :=

[
ΨF

1 (k) ΨF
2 (k) · · · ΨF

k (k)
]

= CD
F

(
JD

F

)k

constitute a solution subspace BD
F of BD −X i.e.

BD
F ⊆ BD −X with dimension

dim BD
F = n :=

{
total sum of the degrees of the

finite elementary divisors of A(σ)

}

Proof. It is easily seen (see also (Gogberg et
al., 1982)) that the pair

(
CD

F , JD
F

)
constitute a

finite spectral pair of A (σ) which satisfy the
following :

q∑
k=0

AkCD
F

(
JD

F

)k
= 0 ; rank col

(
CD

F

(
JD

F

)k
)n−1

k=0
= n

and, therefore, the columns of the matrix ΨD
F (k)

satisfy the equation (1). In order to prove that
BD

F ⊆ BD −X we have to show that the columns
of the matrix ΨD

F (k) do not belong to X or
otherwise[

CT
F (CF JF )T · · ·

(
CF Jq−1

F

)T
]T

/∈ Ker [Rq][ (
CF JN

F

)T (
CF JN

F

)N−1 · · ·
(
CF JN

F

)N−q
]

/∈ Ker [R0]

The proof is not presented here in order to
avoid including a lot of technicalities. However,
it is based a) on the specific selection of the right
minimal basis selected in the sequel and b) on
the linearly independence of the columns of the
transforming matrix UR(s) defined above. The
proof follows similar lines to the ones for the
continuous time case presented in (Karampetakis,
1993) (Chapter 6).

Any other finite spectral pair will also define an
isomorphic space to BD

F . However our intention is
twofold : a) to give the reader a method for the
construction of the finite spectral pair and b) to
simplify some of the proofs with the specific form
of this spectral pair.

2.2 Infinite elementary divisors and solutions of

discrete time AR-representations

Define the ”dual” polynomial matrix Ã (w) of
A (σ) as

Ã (w) := A0w
q + A1w

q−1 + · · ·+ Aq ∈ R [w]p×m

Let ŨL(w) ∈ R (w)p×p
, ŨR(w) ∈ R (w)m×m be

rational matrices having no poles and zeros at
w = 0 and such that



ŨL(w)Ã (w) ŨR(w) = S0
Ã(w)

(w) =

= blockdiag[Id−1, z
µd , ..., zµr , 0p−r,m−r]

where S0
Ã(w)

(w) is the Smith form of Ã (w) at w =

0. Let now ŨR (w) =
[
ũ1 (w) ũ2 (w) · · · ũm (w)

]
where ũj (w) ∈ R (w)m×1 and ũ

(i)
j (w) , Ã(i) (w)

be the qth derivatives of ũj (w) and Ã (w) with
respect to w for i = 0, 1, ..., µj − 1 and j = d, d +
1, ..., r where µj are the multiplicities of the zeros
of Ã (w) at w = 0 or equivalently the degrees of
the infinite elementary divisors. Define

xj,i :=
1
i!

ũ
(i)
j (0)

for i := 0, 1, ..., µj − 1 and j = d, d + 1, ..., r. Then
for final conditions


ξ (N)

ξ (N − 1)
...

ξ (N − q + 1)

 =


xj,i

...
xj,0

0(q−i−1),1


we obtain respectively the linearly independent
backward solutions

ξB
j,i (k) := xj,iδ (N − k) + · · ·+ xj,0δ (N − (k − i))

Define the vector valued functions

ξB
j,i (k) : = xj,iδ (N − k) + · · ·+ xj,0δ (N − (k − i))

i : = 0, 1, ..., µj − 1 and j = k, k + 1, ..., r

Let

ΨB
j (k) : =

[
ξB
j,0 (k) ξB

j,1 (k) · · · ξB
j,µj−1 (k)

]
CB

j : =
[
xj,0 xj,1 · · · xj,µj−1

]

JB
j : =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 0

 ∈ Rµj×µj

where j = d, d + 1, ..., r and

ΨD
B (k) :=

[
ΨB

k (k) ΨB
k+1 (k) · · · ΨB

r (k)
]

CD
B :=

[
CB

k (k) CB
k+1 (k) · · · CB

r (k)
]

JD
B := blockdiag

[
JB

k (k) JB
k+1 (k) · · · JB

r (k)
]

where µ :=
∑r

j=d µj .Then we have the following

Theorem 3. The columns of the following matrix

ΨD
B (k) :=

[
Ψk (k) Ψk+1 (k) · · · Ψr (k)

]
= CD

B

(
JD

B

)N−k

constitute a solution subspace BD
B of BD −X i.e.

BD
B ⊆ BD −X with dimension

dim BD
B = µ :=

{
total sum of the degrees of the

infinite elementary divisors

}

Proof. It is easily seen that the pair
(
CD

B , JD
B

)
constitutes an infinite spectral pair of A (σ) which
satisfies the following :

q∑
k=0

AkCD
B

(
JD

B

)N−k
= 0 ; rank col

(
CD

B

(
JD

B

)N−k
)µ−1

k=0
= µ

and, therefore, the columns of the matrix ΨD
B (k)

satisfy the equation (1). Similar comments to the
ones in the proof of Theorem 2, also apply here.

Any other infinite spectral pair which corresponds
to infinite elementary divisors will also define an
isomorphic space to BD

B .

2.3 Right minimal indices and solutions of discrete
time AR-representations

A (σ) ∈ R [σ]p×m according to our assumption has
rank r ≤ min {p, m} and therefore the dimension
of the right null space of A (σ) is equal to m −
r. Consider a minimal polynomial bases 2 of the
right null space of A (σ), let

[
ūr+1 (σ) ūr+2 (σ) · · · ūm (σ)

]
(7)

The greatest degrees of the columns ūi (σ) , i = r+
1, r + 2, ...,m let {εr+1, εr+2, ..., εm} are called
right minimal indices of A (σ). Let also

xj,i :=
1
i!

ū
(i)
j (0)

i = 0, 1, .., εi − 1 and j = r + 1, r + 2, ...,m

Define the vector valued functions

ξF
j,i (k) := δ (k)xj,i + · · ·+ δ (k − i)xj,0

i = 0, 1, .., εj − 1 and j = r + 1, r + 2, ...,m

Let

2 The last m − r columns of the transforming matrix
UR (σ) defined in subsection 2.1, constitute a basis of the

right kernel of A (σ). Under certain unimodular transfor-

mations i.e. column reduceness, we may do the above basis
minimal.



ΨF
j (k) : =

[
ξF
j,0 (k) ξF

j,1 (k) · · · ξF
j,εj−1 (k)

]
CF

j : =
[
xj,0 xj,1 · · · xj,εj−1

]

JF
j : =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 0

 ∈ Rεj×εj

where j = r + 1, r + 2, ...,m and

Ψε
F (k) :=

[
ΨF

r+1 (k) ΨF
r+2 (k) · · · ΨF

m (k)
]

Cε
F :=

[
CF

r+1 (k) CF
r+2 (k) · · · CF

m (k)
]

Jε
F := blockdiag

[
JF

r+1 (k) JF
r+2 (k) · · · JF

m (k)
]

where ε :=
∑m

j=r+1 εi. Then we have the following

Theorem 4. The columns of the following matrix

Ψε
F (k) := Cε

F (Jε
F )k =

=
[
ΨF

r+1 (k) ΨF
r+2 (k) · · · ΨF

m (k)
]

constitute a solution subspace Bε
F of BD i.e. Bε

F ⊆
BD −X with dimension

dim Bε
F = ε := total sum of the right minimal indices

Proof. Similar to the proof of Theorem 2.

Consider the dual minimal polynomial base of (7).
It is easily seen that constitutes a minimal bases of
the right null space of the dual polynomial matrix
Ã (σ) of A (σ), let

[
ũr+1 (σ) ũr+2 (σ) · · · ũm (σ)

]
The greatest degrees of the columns ũi (σ) , i = r+
1, r + 2, ...,m are the same as the right minimal
indices of A (σ) i.e. {εr+1, εr+2, ..., εm}. 3 Let also

xj,i :=
1
i!

ũ
(i)
j (0) i = 0, 1, .., εi−1 and j = r+1, r+2, ...,m

Define the vector valued functions

ξB
j,i (k) : = δ (N − k)xj,i + · · ·+ δ (N − (k − i))xj,0

i = 0, 1, .., εj − 1 and j = r + 1, r + 2, ...,m

Let

3 The vectors ui(s) i = r+1, .., m are linearly independent

and thus its values at s = 0 i.e. ui(0) i = r + 1, .., m, are
also linearly independent. Therefore the leading coefficient

matrix of the vectors ũi(s) of the dual polynomial basis

are not zero and have the same degrees as the ones of the
right minimal polynomial basis of A(σ).

ΨB
j (k) : =

[
ξB
j,0 (k) ξB

j,1 (k) · · · ξB
j,εj−1 (k)

]
CB

j : =
[
xj,0 xj,1 · · · xj,εj−1

]

JB
j : =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 0

 ∈ Rεj×εj

where j = r + 1, r + 2, ...,m and

Ψε
B (k) :=

[
ΨB

r+1 (k) ΨB
r+2 (k) · · · ΨB

m (k)
]

Cε
B :=

[
CB

r+1 (k) CB
r+2 (k) · · · CB

m (k)
]

Jε
B := blockdiag

[
JB

r+1 (k) JB
r+2 (k) · · · JB

m (k)
]

Then we have the following

Theorem 5. The columns of the following matrix

Ψε
B (k) := Cε

B (Jε
B)N−k =

=
[
ΨB

r+1 (k) ΨB
r+2 (k) · · · ΨB

m (k)
]

constitute a solution subspace Bε
B of B i.e. Bε

B ⊆
BD −X with dimension

dim Bε
B = ε := total sum of the right minimal indices

Proof. Similar to the proof of Theorem 3.

Therefore, we conclude that the right minimal
indices give rise to ε linearly independent forward
solutions and ε linearly independent backward
solutions which do not belong to X.

2.4 Construction of the whole solution space

Define the following set of solutions

B̃D
F = BD

F ⊕X ; B̃D
B = BD

B ⊕X

B̃ε
F = Bε

F ⊕X ; B̃ε
B = Bε

B ⊕X

where BD
F (k) , BD

B (k) , Bε
F (k) and Bε

B (k) are the
solution vector spaces which are due to the finite
and infinite elementary divisors and the right
kernel of A (σ). Let also the following spaces

B̂D
F : =

{
[ξ (k)]R : ξ (k) ∈ B̃D

F

}
= B̃D

F /R

B̂ε
F : =

{
[ξ (k)]R : ξ (k) ∈ B̃ε

F

}
= B̃D

F /R

B̂D
B : =

{
[ξ (k)]R : ξ (k) ∈ B̃D

B

}
= B̃D

B /R

B̂ε
B : =

{
[ξ (k)]R : ξ (k) ∈ B̃ε

B

}
= B̃ε

B/R



It is obvious that the above spaces partition the
sets B̃D

F , B̃D
F , B̃D

B and B̃ε
B and are vector spaces.

Let also

CF : =
[
CD

F Cε
F

]
; JF :=

[
JD

F 0
0 Jε

F

]
CB : =

[
CD

B Cε
B

]
; JB :=

[
JD

B 0
0 Jε

B

]
Theorem 6. The vector space

B̂D := BD/R = B̂D
F ⊕ B̂D

F ⊕ B̂D
B ⊕ B̂ε

B

Proof. It is known (1) that the dimension of B̂D is
equal to n + µ + 2ε. In order to determine a basis
for B̂D we have developed in the previous three
sections a set of n + µ + 2ε solution vectors that
belong to the space BD −X let ξi(t). Due to the
above construction we can show (following similar
lines to Chapter 6 of (Karampetakis, 1993)) that
these vectors are linearly independent. The proof
is based on the fact that the proposed solution
vectors are constructed from the linearly indepen-
dent columns of the unimodular matrix UR(s) and
thus the values of UR(s) at s = 0 are linearly
independent. However, in order to avoid all these
technicalities we leave the proof. Therefore the
vectors [ξi(k)]R span the vector space B̂D which
verifies the proof.

An interesting conclusion of the above is that

BD =



ξ (k) :=
[
CF CB

] [
Jk

F 0
0 JN−k

B

] [
a
b

]
+

+x (k)

x(k) :=
k∑

i=0

ûr+1 (i) z1 (k − i) +

+ · · ·+
k∑

i=0

ûm (i) zm−r (k − i)

a ∈ Rn+ε, b ∈ Rµ+ε


(8)

3. CONCLUSIONS

In this paper we have studied the solution
vector space of discrete time nonregular AR-
representations in an open interval [0, N ] and thus
extending the results presented in (Gogberg et
al., 1982), (Antoniou et al., 1998). More specif-
ically we have shown that the solution space
of nonregular AR-representations is divided into
equivalence classes where each equivalence class
represents the whole number of solutions of the
AR-representation under certain boundary values
(initial-final conditions). In the sequel we have
presented a method for the construction of the

behavior space from the structural invariants of
the polynomial matrix which describe the system.
More specifically a) we have constructed n + ε
linearly independent forward solutions due to the
finite elementary divisors and the right minimal
indices of A(σ) and µ + ε linearly independent
backward solutions due to the infinite elementary
divisors and the right minimal indices of A(σ)
and b) we have proposed a closed formula for
all the solutions of the AR-representation. The
meaning of the algebraic structure of a polynomial
matrix in relation to the solution vector space of
nonregular discrete time AR-representations has
thus been elucidated.

The investigation of the solution vector space
of discrete nonregular AR-Representations gives
rise to a numerous applications as, for example,
the solution of the zeroing -output problem, the
determination of the controllable or uncontrol-
lable and observable or unobservable subspaces
of discrete polynomial matrix descriptions e.t.c.
Moreover, we can show following the same rea-
soning as (Karampetakis and Vardulakis, 1993),
(Karampetakis, 1993) that the left kernel of the
polynomial matrix which describes the system
plays crucial role in the existence of solution.
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