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Abstract: The work presented in this paper exploits the transport characteristic of a solar plant
where the transport velocity (a flow) is the manipulated variable, i.e. the control input. The
solar field is modelled by a partial differential equation. A non-uniform sampling in time is
performed in order to obtain a discrete linear model. Due to the transport dynamics of the
plant the resulting transfer function has a finite impulse response and the optimal control
derived from a black-box approach of such a systems yield pure feed-forward compensators.
The main contribution of this paper is the use of a state-space description of the plant in
conjunction with the nonuniform sampling that allows to introduce the feedback mechanism
through the state observer. The controller results from the optimization of a multi-step
quadratic cost function. Experimental results performed with the solar plant are shown.
Copyright c©2002 IFAC.
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1. INTRODUCTION

This paper concerns the control of a solar energy
collector field and extends the work presented in
(Silva, 1999; Silva and Lemos, 2001). This work is
characterized by the use of non-uniform sampling
in time to linearize the partial differential equation
(PDE) in the discretization procedure. In the work
referenced above an I/O description of the plant was
being used resulting in finite impulse response (FIR)
transfer function. This meant that the optimal predic-
tive controller is given by a feedforward block with
the inputs: setpoint value, accessible disturbances and
past control actions, i.e. there is no dependency on
the plant output. Instead here, the internal dynamics
are taken into account and the control law includes
feedback terms by means of a state observer. Plus, the

1 Part of this work has been done under the project
POSI/1999/SRI/36328 (AMBIDISC) and under POSI, IIIrd
EC Framework Program. The experiments were supported by
EC-DGXII under the IHP-ARI (5FP).

introduction of the internal state estimation allows the
controller to damp the internal oscillations that arise
from the cancellation of anti-ressonant modes.

Although the authors, among other researchers, have
participate on the development of several controllers
for this field using adaptive predictive control tech-
niques (Coito et al., 1997; Silva et al., 1998; Silva et
al., 1997; Rato et al., 1997; Pickhardt and Silva, 1998),
i.e. without no a priori knowledge about the plant, in
this work, the goal was to step up performance by
the development of an adaptive predictive controller
including, during design, the relevant physical char-
acteristics of the plant. The ACUREX field used in
these experiments is described in the available liter-
ature (Camacho et al., 1992; Camacho et al., 1988).

In this plant the main sources of disturbances are mea-
sured and its dynamic behaviour depends strongly on
its geometry (available). This allows us to derive an
accurate model which is described by a partial differ-
ential equation (PDE). The plant is characterized by:
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Fig. 1. Solar collectors (one of twenty rows).

non linearity caused by the dependency of bandwith
and static gain with flow (the manipulated variable);
fast accessible disturbances (solar radiation with sud-
den clouds); time varying dynamics with the daily and
annually cycles, and pluvial cycles that modify the
reflectivity of the mirrors; and sudden plant changes
when groups of collectors are entering/exiting solar
track.

Since the controller is to be implemented in a digital
computer, the dynamic dependency on flow can be
overcome by time-scaling, replacing the elements of
time (sampling period) by elements of volume. This
results in a discrete linear model with variable sam-
pling period dependent on the imposed flow. Plants,
such as rolling mills, conveyor belts or fluids in pipes
can be transformed with time-scaling (Åström and
Wittenmark, 1984). Plants of this class may be con-
trolled with advantage using the method reported here.

The loss of generality of the results presented here
from the Adaptive Predictive Control point of view
is compensated by the possibility of extending them
for the class of systems modelled by similar equations
(PDEs), e.g. heat-exchangers, road traffic, river pollu-
tion, etc.

The paper is organized as follows. In section 2 the
plant and the discretization of its the non linear model
is described. Section 3 describes the controller design.
In section 4 some experimental results on the real plant
are shown and some conclusions are drawn in section
5.

2. PLANT DESCRIPTION

The ACUREX field of the Plataforma Solar de Almerı́a
(PSA) in Southern Spain, consists of 480 distributed
solar collectors. They are arranged in 10 loops along
an east-west axis (fig. 1). The collector has a reflective
cylindrical parabolic surface in order to concentrate
the incident solar radiation on a pipe located on the
surface focal line.

A heat transfer fluid (oil) is pumped from the bottom
of a storage tank through the collectors, where it
collects solar energy, and from the output of the field,
again to the top of the tank. By manipulating the oil
flow, with the pump, it is possible to control the output
temperature of the oil.

mirrors

temperature
sensors

pump

pipe w/oil

oil
tank

Fig. 2. Process schematic.

The controlled variable is computed from the average
values of an array of 10 temperature sensors located at
the output of each loop.

Due to safety reasons the oil flow is limited between
2.0 and 10.0 liters per second. The heated oil from the
collector field stored in the tank can be used e.g. for
the production of electrical energy or for the operation
of a desalination plant.

The field is equipped with a tracking system by which
the mirrors can rotate parallel to the axis of the receiv-
ing tube in order to follow the sun in height throughout
the day. There is a temperature sensor located at the
input of the field, measuring the temperature of the oil
entering the active part (mirrors). It is also available
a 2 d.o.f. solar radiation sensor that is able to follow
the sun, measuring the total incident radiation. With an
algorithm using the actual day and time it is possible
to compute the corrected radiation (i.e. the effective
radiation heating the oil) from that measure.

2.1 PLANT NONLINEAR MODEL

The focus of the modelling work has been put into
the transport effect since this is the most relevant part
for the dynamics. Other thermal mechanisms, such
has e.g. thermal diffusion, have been negleted in the
model presented next (Pickhardt and Silva, 1998).
The model is nonlinear, yet, it is given by a simple
formula with only two parameters that relates the
output temperature,Tout, with the input temperature,
Tin, and the solar radiation,R:

Tout(t) = Υ Tin(t− τ) + Γ
∫ t

t−τ

R(σ)dσ (1)

The parameterΓ = (Dηo)/(ρASf ) (whereD is the
mirrors width, ηo is the optical efficiency,A is the
transversal pipe section area,Sf is the specific thermal
capacity of the oil andρ is the oil density approx-
imated by a constant) has been estimated using real
plant data and the same was made for the parameterΥ
that takes into account the losses inside the collector.

The input-output travelling time,τ , is obtained from
∫ t

t−τ

F (σ)dσ = V (2)

whereF (.) is the volumetric flow inside the collector
andV is the total collector volume.
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Fig. 3. Relation between the flow and sampling time.
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Fig. 4. State temperatures.

2.2 TIME-SCALED DISCRETIZATION

Consider again equations (1) and (2) and use ele-
mentary volumes instead of elementary time intervals
(sampling period) on a discretization procedure. Thus,
let us divide de collector volume,V , in n smaller equal
volumes,v, and consider a zero order hold (ZOH) for
the flow command since the controller will be imple-
mented in a digital computer. Choose the sampling
period,TS , for each discrete time instant,k, such that
the product of the flow value by the sampling period
results in the elementary volume (fig. 3), i.e.

v =
V

n

F (k)× Ts(k) = v (3)

Then, equation (2) implies that
n∑

i=1

Ts(k − i) = τk (4)

whereτk stands for the I/O transport delay (through
volume V ), in seconds, for the fluid element that is
present, at time instantk, at the output. The discrete
time radiation signal can be computed from the con-
tinuous one with a forward average at timek as

R(k) =
1

Ts(k)

∫ tk+1

tk

R(σ)dσ (5)

Equation (1) represents the I/O model for the complete
pipe with volumeV . This equation can be applied for
each of then volumesv with the variable sampling
period (3) yielding, in the discrete time,

xj(k + 1) = βxj−1(k) + ΓR(k)Ts(k)

where β is a loss parameter such thatβn = Υ;
andxi(k) is the oil temperature at the output of the
subvolumei (see fig. 4) at the (discrete) time instantk
. Using (3) this can be written as

xj(k + 1) = βxj−1(k) + α
R(k)
F (k)

j = 1 · · ·n (6)

y(k) = xn(k) andx0(k) = w(k)

. whereα = Γv is the solar gain for a subvolumev.

Gathering these equations in a state-space frame
yields

X(k + 1) =




0 · · · 0 0

βIn−1

0
...
0




︸ ︷︷ ︸
A

X(k)

+




1
1
...
1




︸ ︷︷ ︸
B

(α
R(k)
F (k)

)
︸ ︷︷ ︸

u(k)

+




1
0
...
0




︸ ︷︷ ︸
D

w(k) (7)

y(k) = [0 · · · 0 1]︸ ︷︷ ︸
C

X(k)

whereX(k) = [x1(k) · · ·xn(k)]T is the state vector.

The characteristic polynomial of (7) is given by
Q(λ) = λn, i.e. n eigenvalues placed at the origin
resulting from the transport dynamics.

The controlability (foru andw inputs) and observabil-
ity matrices are given by:

CB =




1 0 · · · 0

1 β 0
...

...
...

.. . 0
1 β · · · βn−1




CD =




β 0 · · · 0

0 β2 0
...

... 0
. .. 0

0 · · · 0 βn




O =




0 · · · 0 1
... 0 β 0

0 ··· 0
...

βn−1 0 · · · 0




and thus the system is fully controllable and fully
observable.

3. CONTROLLER DESIGN

The controller is obtained from the minimization of
a quadratic cost in order to compute a state-feedback
gain.

Consider the following cost function (T < n):

JT =
T∑

i=1

{
ỹ2(k + i) + ρu2(k)

}
(8)



The future values of the output error are given by

ỹ(k + i) = CX(k + i)− r(k + i)

X(k + i) = AiX(k) + CBi
[u(k + i− 1) · · ·u(k)]T

+CDi [w(k + i− 1) · · ·w(k)]T (9)

with

Ai =




0 · · · 0 0

βiIn−i

0
...
0


 i ≤ n− 1

CBi =




1 0 · · · 0

1 β
. . .

...

1 β
. . . 0

...
...

. . . βi−1

1 β · · · βi−1




︸ ︷︷ ︸
#i





#n

CDi =




β 0 · · · 0
0 β2 0 0
... 0

. .. 0
0 · · · 0 βi

0 · · · · · · 0




︸ ︷︷ ︸
#i





#n

If the minimization of (8) is made under the assump-
tion of constant control action and constant input tem-
perature over the control horizon, i.e.,

u(k) = · · · = u(k + i− 1)

w(k) = · · · = w(k + i− 1)

then the terms of the r.h.s. of (9) are given by:

CAiX(k) = βien−i

CCBi [u(k+i−1) · · ·u(k)]T = (1+β+· · ·+βi−1)u(k)

CCDi [w(k+i−1) · · ·w(k)]T = 0 or βnw(k) if i = n

Assuming also a constant reference value along the
control horizon the minimization of (8) yields a con-
trol action:

u(k) =
(
∑T

i=1 λi)r(k)−∑T
i=1 λiβ

ixn−i(k)∑T
i=1 λ2

i + ρ
(10)

whereλi = 1+β+ · · ·+βi−1. Then, the flow applied
to the field is computed from

F (k) =
αR(k)
u(k)

and
Ts(k) =

v

F (k)

It is remarked that the condition of keeping the control
action constant along the horizon arises, not only from
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Fig. 5. Controller eigenvalues (n=4).

the simplicity that introduces in the minimization pro-
cedure, but also because it should be the best strategy
to couple with the existence of anti-resonant modes.
Due to the Finite Impulse Response (FIR) structure of
the model the best control strategy (assuming constant
radiation) should be to apply a step with the adequate
amplitude and wait for the new equilibrium point to be
set. This strategy, in open-loop would provide a ramp
temperature profile inside the collector pipe, with the
final temperature equal to the desired one. Now, with a
receding horizon strategy only the first control action
is applied to the plant and the minimization is repeated
over the next time sample.

Since the horizonT is discrete and the sampling pe-
riod Ts(k) depends on the flow, the value ofT es-
tablishes, not the time horizon into the future, but the
amount of oil inside the collectors that is important to
the computation of the control action. This parameter
will allow to select the level of “impatience” of the
controller. Figure 5 show the distribution of the result-
ing eigenvalues forT = 1 to 3 whenn = 4. Note that
for T = 1 the eigenvalues are over the stability limit.

3.1 OBSERVER DESIGN

In the ACUREX field, the measures of the internal oil
temperature are not available. Thus, a state observer
has been implemented with observer gain given by

L =
[

1
n

2
n
· · · n

n

]

which is equivalent to a progressive linear correction
along the pipe. Then, the observer characteristic poly-
nomial is given by

P (λ) = |λI −A + LC|

= λn +
n

n
λn−1 +

n− 1
n

λn−2 + · · ·+ 1
n

Figure 6 shows the the distribution of the observer
eigenvalues forn = 20.

It is reminded at this point that the model is based on
certain assumptions where all thermal inertia of the oil
and metal were left out. In the experimental results to
be shown in the next section, the model parameters
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Fig. 6. Observer eigenvalues (n=20).

α and β are on-line estimated via Recursive Least
Squares (RLS).

4. EXPERIMENTAL RESULTS

The following experiments have been made at PSA in
June 2001.

From the theory to the real world it is necessary to
select the number of collector divisions,n. This value
will establish, with the range of allowed flows, the
sampling period range. The total field volume for the
active part is around1800 liters. A value ofn = 20
was chosen in order to get a sampling period between

Ts(min)
V

n

1
Fmax

= 9s and Ts(max)
V

n

1
Fmin

= 45s

In previous work with this plant, the authors have
knowledge of use, for the (fixed) sampling period,
values between15s and39s.

Experiment 1 (28-06-2001)

This experiment was performed withT = 8, and gives
emphasis to the ability of the time scaled predictive
controller to make set-point temperature changes of
50◦C overcoming the non linearity that results from
the sudden change in the flow value. In fig. 7 the
output temperature is presented with its reference on
the top plot and it is possible to observe the flow signal
on the bottom one. Fig. 8 show the solar radiation (top)
and the input temperature (bottom).

It can be seen from the plots that there are oscillations
in the flow value which are not present at the output.
This is due to the antiressonant zeros cancellation by
the controller poles.

Experiment 2 (29-06-2001)

In this experiment, in order to reduce the effect of the
pole-zero cancellation the control horizon has been
increased toT = 16. In fig. 9 the output temperature
is presented with the flow signal. Solar radiation and
input temperature can be seen in fig. 10.
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Fig. 7. Exp. 1 Output temperature and reference (top);
and field flow (bottom).
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Fig. 8. Exp. 1. Solar radiation (top); and input temper-
ature (bottom).
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Fig. 9. Exp. 2 Output temperature and reference (top);
and field flow (bottom).

5. CONCLUSIONS

A time scaled predictive controller has been developed
for the special case of a solar power plant. The algo-
rithm takes advantage of the non-linear structure of
the plant reflecting the transport mechanisms inside
the collectors to obtain, via a time scale non-linear
transformation, a linear structure in discrete time. This
transformation implies varying the sampling interval
according to the value of the manipulated variable, the
flow. The algorithm has been applied to the real plant
and the results were presented in this paper.



12.5 13 13.5 14 14.5 15 15.5
500

600

700

800

900

1000

R
 [W

/m
2]

ACUREX, 29−06−2001

12.5 13 13.5 14 14.5 15 15.5
150

160

170

180

190

200

T
in

 [C
]

t [h]

Fig. 10. Exp. 2. Solar radiation (top); and input tem-
perature (bottom).

This concept is not restricted to this particular field
(the ACUREX). Any solar field using this concept
of manipulating flow to change the residence time
inside the collector can overcome the time constants
dependence on flow with this kind of transformation.
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