
SUPPRESSION OF LOAD OSCILLATIONS IN
PRECISION SERVOMECHANISMS SENSING ONLY

MOTOR POSITION

Gianni Ferretti ∗ GianAntonio Magnani ∗ Paolo Rocco ∗

∗Dipartimento di Elettronica e Informazione, Politecnico di
Milano, Piazza L. da Vinci 32, Milano, 20133, Italy,

E-mail {ferretti,magnani,rocco}@elet.polimi.it

Abstract: An analysis of the two-mass model of a servomechanism is first presented
in this paper. The analysis stands as a basis for the design of a P/PI controller
where suppression of load oscillations, rather than fast setpoint tracking of the motor
position is pursued. Further improvements of the load behavior can be achieved by
a notch filter placed outside the velocity loop. Simulation results are given to assess
the effectiveness of the proposed approach.
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1. INTRODUCTION

Positioning servomechanisms are used in a large
number of applications in robotics, machine tools,
packaging, printing and textile machines, enter-
tainment products, computer peripherals and de-
vices, space and defense pointing, motion systems
and other applications. The large majority of ser-
vos use permanent magnets motors connected to
the load by a transmission chain (or gearbox),
and a single position sensor, either an encoder
or a resolver, mounted on the motor shaft. This
is by far the most common solution adopted in
articulated robotic manipulators.

By feeding back the motor position only, it is
relatively easy to obtain satisfactory control of
the motor position and velocity, using either
P/PI or PID control, or more advanced com-
pensation techniques (Lee and Tomizuka, 1996;
Ohnishi, 1989; Umeno et al., 1993; Umeno and
Hori, 1991; Yao et al., 1997). However, this does
not guarantee a satisfactory control of the load po-
sition and velocity, for demanding motion control
applications, in particular during slow motion. For
instance, oscillations of the tip of a manipulator
arm or of the tool of a milling machine may

arise. A large variety of sources of oscillation can
be identified: motor (Ferretti et al., 1998; Holtz
and Springob, 1996; Jahns and Soong, 1996) and
gearbox (Godler et al., 1994) pulsating torque dis-
turbances, torsional elasticity of the transmission
chain, sensor noise (Hanselman, 1991), friction
(Armstrong-Hélouvry et al., 1994), backlash, and
others. Among them, special attention should be
paid to the transmission elasticity, which generally
causes the lowest (“first”) resonance frequency of
the positioning system.

In the review work (Ohnishi et al., 1996) the dis-
turbance observer technique, already presented in
(Umeno et al., 1993) and (Umeno and Hori, 1991),
is used to control a rigid servo affected by an
unknown load torque, while the resonance ratio
control is used when an elastic transmission is
considered. The disturbance observer is also used
in (Lee and Tomizuka, 1996; Yao et al., 1997),
where torsional flexibility of the joint is not di-
rectly accounted for. A review of several works
dealing with suppression of torsional oscillations
is reported in (Vukosavic and Stojic, 1998), where
the contributions are divided in three categories:
1) methods that exploit measurements on both
the motor and the load sides; 2) methods based on
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the motor measurements only and observation of
the state of the system; 3) notch filters plus con-
ventional loopshaping techniques. The first cat-
egory include most of the works where nonlin-
ear control theory is used: singular perturbation
and integral manifold theory is used in (Marino
and Spong, 1986) for a single joint case and in
(Spong, 1987) for the extension to a complete
articulated manipulator; feedback linearization is
used in (Forrest-Barlach and Babcock, 1986); non-
linear observer theory in (Tomei, 1990); adaptive
control theory in (Lozano and Brogliato, 1992).
The second group includes more industry-oriented
works, such as (Lorenz and Patten, 1991) and
(Schmidt and Lorenz, 1992), as well as the early
work (Nicosia and Tomei, 1991), where a PD
controller on the motor coordinate, enforced with
a compensation of the gravitational effect, is con-
sidered. In (Ferretti et al., 2001) different strate-
gies for model based control of the system are
compared. Finally, the analysis in (Vukosavic and
Stojic, 1998) mostly belongs to the third group.

As a matter of fact, load vibrations can be reduced
by a proper design of the classical P/PI controller
(P on the position, PI on the velocity) , based on a
careful analysis of the properties of the two-mass
model of the elastic system. As a consequence
of the relative position of poles and zeros of the
process transfer function, it is straightforward to
show, using the root locus analysis, that the com-
mon practice of increasing the bandwidth of the
velocity loop (high gain of the PI regulator) fosters
the oscillation of the load. It is then suggested a
way to choose the loop gain, trading off between
higher values, for a fast velocity response, and
lower values, for more damped oscillations of the
load. Further improvement of the damping of the
closed loop dominant poles can also be obtained
with a proper tuning of a notch filter that, how-
ever, has to be placed outside the velocity loop.

The properties of the two-mass model are dis-
cussed in Section 2. The effects on load oscillations
of the design of a classical P/PI control closed on
the motor position are studied in Section 3, and
applied to an illustrative example (a prototype
servo) in Section 4. The use of a notch filter
outside the velocity loop is discussed in Section
5, while concluding remarks and future directions
are given in Section 6.

2. MODEL OF AN ELASTIC SERVO
MECHANISM

A fast dynamics servo may have several flexible
elements and connections, resulting in a dynamic
behavior affected by several resonances. From the
point of view of the control design, it is essential
to model correctly the lowest frequency resonance,
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Fig. 1. Elastic servo positioning system

which plays an essential role in the design, as it is
shown later on. Under certain conditions that are
frequently satisfied, the first resonance frequency
is correctly predicted by the well known model of
two masses connected through an elastic element
(Fig. 1).

The model is described by the following lin-
ear equations (Spong, 1987; Vukosavic and Sto-
jic, 1998), if the non linear friction terms are
neglected:

τm =KtI (1)

τm = Jmq̈m + Dmq̇m + τt (2)

τt =Kel (qm − nql) + Del (q̇m − nq̇l) (3)

nτt = Jlq̈l (4)

where τm is the motor torque, I is the motor cur-
rent (actually the amplitude of the sinusoidal cur-
rent of each stator phase of the brushless motor);
Kt is the motor torque constant, ql and qm are the
load and motor angular positions, respectively; Jl,
Jm are the load and rotor inertias, respectively;
Dm is the viscous friction coefficient at the motor
side; Kel, Del, are the joint stiffness and damping
factors, respectively; n is the transmission ratio;
nτt is the torque delivered by the gear reducer at
the load side. Furthermore, thanks to the fast dy-
namics current amplifiers, the difference between
the current command Ī (control variable) and the
actual current I can be neglected (Ī = I) for
the purpose of position control design. Pulsating
torque disturbances act as additive, variable fre-
quency disturbances to be rejected by the control
system. The transfer function Gvm(s) from the
motor torque to the motor velocity is then given
by:

Gvm(s) =
Jlrs

2 + Dels + Kel

∆(s)
(5)

with

∆(s) = JlrJms3 + [(Jm + Jlr)Del + JlrDm] s2 +

+ [(Jm + Jlr)Kel + DmDel] s + DmKel

where Jlr = Jl/n2 is the load inertia referred to
the motor side.

The polynomial ∆(s) does not have a simple
factorization but, for common values of the system
parameters, it shows a couple of complex roots



whose natural frequency and damping factor can
be approximately obtained letting Dm = 0:

ωp
∼=

√
Jeff Kel

JlrJm
ξp

∼= 1
2
Del

√
Jeff

JlrJmKel

where Jeff = Jm + Jlr. The third pole sr is in a
lower frequency range, as it is strongly related to
the rigid behavior of the system (sr

∼= −Dm/Jeff ).

The zeros of the transfer function are complex too,
with natural frequency and damping factor given
by:

ωz =
√

Kel

Jlr
ξz =

1
2
Del

√
1

JlrKel

It is worth noting that

ωp

ωz
=

ξp

ξz
=

√
1 + ρ > 1

ρ = Jlr/Jm being the inertia ratio. Motor inertia
and transmission ratio are frequently selected to
pursue the inertia matching, namely to obtain
ρ = 1.

3. CLASSICAL CONTROL AND LOAD
OSCILLATIONS

The control system requirements concern setpoint
tracking and rejection of load and torque distur-
bances. Both of them demand large control sys-
tem bandwidth, namely large feedback loop gain.
However, a critical problem, especially during slow
motion and at motion starts and stops, is due
to load oscillations. For instance, load oscillations
may reveal as vibrations of the end-effector of a
robot arm during the execution of a slow motion,
like in arc welding tasks, while in milling and
grinding machines they may cause some slight
undulation, and thus poor finishing, of working
surfaces. Since the analysis of the properties of the
elastic model shows that high feedback gains on
motor position increase load oscillations, a trade
off is needed on the loop gain.

In most commercial products, position control
(Fig. 2) consists of a position loop with a pro-
portional (P) regulator, implemented for instance
in a CNC, cascaded with a velocity loop with
proportional-integral (PI) regulator, implemented
in the drive electronics. The integral action en-
sures that the error on motor position for con-
stant setpoint, load torque and torque distur-
bances (τd), vanishes at steady-state. While in the
past the velocity was sensed by a tachometer, in
current products it is obtained by numerical dif-
ferentiation of the motor position, sensed by either
an encoder or a resolver. To improve the setpoint

tracking capabilities, a feedforward derivative ac-
tion is also inserted from the position setpoint to
the velocity one.

It is easy to check that this control scheme is
equivalent to a PID controller with real zeros, fed
with the motor position error ep = q̄m − qm and
with output Ī.

Note that in the block diagram of Fig. 2 a block
has been added, with transfer function:

Glm(s) =
1
n

Dels + Kel

Jlrs2 + Dels + Kel
, (6)

which allows computation of ql from qm.

The velocity loop is designed first. The loop trans-
fer function is:

Lv(s) = KcvKtJlr

(s + 1/Tiv)
(
s2 + 2ξzωzs + ω2

z

)
s∆(s)

and the closed loop transfer function from setpoint
to motor velocity is:

Fv(s) = KcvKtJlr

(s + 1/Tiv)
(
s2 + 2ξzωzs + ω2

z

)
∆v(s)

where ∆v(s) is defined as

∆v(s) = JlrJms4 +
[

(Jm + Jlr)Del+
JlrDm + KcvKtJlr

]
s3 +

+
[
(Jm + Jlr)Kel + DmDel+
KcvKtJlr (2ξzωz + 1/Tiv)

]
s2 +

+
[

DmKel+
KcvKtJlr

(
ω2

z + 2ξzωz/Tiv

)
]

s +

+ KcvKtJlrω
2
z/Tiv

For Kcv → ∞ the system will be stable, whatever
Tiv > 0, but two poles approach the lightly
damped process complex zeros. In this case, also
two roots of the characteristic polynomial of the
closed position loop, given by:

∆p(s) = s∆v(s) + KcpKcvKtJlr (s + 1/Tiv) ·(
s2 + 2ξzωzs + ω2

z

)
become the process zeros, whatever Kcp > 0. On
the other hand, for smaller values of Kcv two of
the position loop poles become the process zeros
only for Kcp → ∞.

If two closed loop poles are equal (or almost equal)
to the process zeros, the relevant dynamics is not
observable from the motor position, but it reveals
with oscillations of the load, because of the poles
of Glm(s) (6).

As a conclusion, the controller design requires
to trade off between higher gains (in particular
Kcv), that increase setpoint tracking and torque
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Fig. 2. P/PI control with feedforward action
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Fig. 3. Prototype positioning system

Kt Jm Jl n Dm

1.6 1.5 × 10−4 2.7 100 3.4 × 10−3

Kel Del

3.05 2.2 × 10−3

ωz ξz ωp ξp

106.3 3.8 × 10−2 177.5 0.105 ÷ 0.064

|sr| Tz

8.13 7.2 × 10−4

Table 1. Physical parameters

disturbance rejection capabilities, and lower gains,
needed to keep the damping of closed loop poles
reasonably high.

In this respect, the common industrial practice
of tuning the velocity loop as fast as possible,
increasing the gain Kcv until an “audible noise”
is generated by the motor, proves to be quite
dangerous. In fact, this is exactly the way to
induce load oscillations, as the high gain velocity
feedback places two closed loop poles near the
lightly damped process zeros, where they remain
also after closing the position loop.

4. AN ILLUSTRATIVE EXAMPLE

The prototype servo positioning system of Fig. 3
is considered as an illustrative example.

It consists of a Control Techniques permanent
magnet AC brushless motor, with a nominal
torque of 2.3 Nm and a nominal power of 700 W, a
Harmonic Drive speed reducer, and a load. Since
the load rotates in a horizontal plane the gravity
force does not act on the system. The parameters
of the testbed are given in Table 4 (in SI units).

Figures 4.a and 4.b show the root loci of the
position loop at varying Kcp, obtained with Tiv =
1/ |sr| (low frequency zero-pole cancellation) and
with two different choices of Kcv, respectively
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Fig. 4. a) Root locus for Kcv = 5.2 × 10−2; b)
Root locus for Kcv = 1.84× 10−2
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Fig. 5. Time responses of qm (dashed line) and nql

(solid line) for a) Kcv = 5.2 × 10−2 and b)
Kcv = 1.84× 10−2

Kcv = 5.2 × 10−2, corresponding to a fast but
poorly damped velocity loop, and Kcv = 1.84 ×
10−2, corresponding to a slower but well damped
loop. In the first case, two poles of the position
closed loop are very close to the process zeros,
even for low values of Kcp, while in the second
case the poles starting from the complex poles of
the velocity closed loop go toward infinite. The
value of Kcv discriminating this behavior, in this
example, has been found to be Kcv = 2.4× 10−2,
corresponding to ωcv = 93.78, i.e. ωcv = 0.52ωp =
0.88ωz, which resembles the well known rule of
thumb for the choice of ωcv, namely ωcv ≤ 0.5ωp.

The time responses of qm and nql to steps in
setpoint and torque disturbances for both cases,
computed with Kcp = 30 (i.e. approximately
ωcp = 30) and without the feedforward derivative
action, are given in Figs. 5.a and 5.b respectively.
The response to torque disturbances is dominated
by the real pole cancelled by the zero of the PI



regulator. If the cancellation is avoided, this mode
can be made faster. The disturbance rejection
is stronger for Kcv = 5.2 × 10−2 but the load
behavior is more oscillatory.

5. ON THE USE OF THE NOTCH FILTER

Commercial drives frequently enhance the P/PI
control scheme using a notch filter, namely a filter
with transfer function:

Gnf (s) = µ
s2 + 2ξnωns + ω2

n

s2 + 2ξdωds + ω2
d

Sometimes the filter is inserted within the velocity
loop, in series to the PI, sometimes outside. In
principle, the filter can be used to avoid the ex-
citation of oscillatory modes through the control
variable. However, in industry there are controver-
sial opinions about the effectiveness of the notch
filter and on the best way to exploit it. Frequently,
people rely on the notch filter to counteract os-
cillations which cannot get rid of otherwise. It is
also suggested to use the notch filter to cancel the
open loop complex poles and replace them with
more damped poles (Vukosavic and Stojic, 1998).
Precise cancellation however is difficult because of
uncertainties on the servo system parameters, es-
pecially the damping coefficient. Moreover, poles
are cancelled in the transfer functions involving
the setpoint, but they remain unchanged in the
closed loop and may be excited by other inputs,
especially by torque disturbances.

Following the above root locus analysis, it is
suggested in this contribution to place the filter
outside the velocity loop and to select its zeros so
as to cancel the poles of the velocity loop. The
position loop root locus, for the case Kcv = 5.2×
10−2, becomes as in Fig. 6.

The closed loop dominant poles, again with Kcp =
30, are now well damped, even if the poorly
damped poles of the velocity loop are still ob-
servable in the response to torque disturbances.
As a result, the step responses of qm and nql

are as in Fig. 7. There is a clear improvement in
the response to the setpoint (the overshoot is due
to the step input, which must be avoided) and
a smaller one in that to the torque disturbance,
whose dynamics is dominated by the cancelled
poles.

As a conclusion, designing jointly the velocity
regulator and the notch filter, a good trade off can
be obtained between velocity loop bandwidth and
damping of the closed loop dominant poles. The
velocity loop gain Kcv should be first chosen to
get a desired damping of the velocity loop poles.
Then, these poles are cancelled (i.e., blocked) by
the notch filter. Finally, the position loop gain Kcp
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Fig. 6. Root locus of the position loop with P/PI
plus notch filter
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Fig. 7. Time responses of qm (dashed line) and
nql (solid line) for Kcv = 5.2×10−2 with the
notch filter

is selected to achieve the desired damping of the
dominant poles of the servo system.

The filter design proved also to be robust to
errors in model parameters, since the notch filter
zeros cancel out closed loop poles (the velocity
loop ones), which are less sensitive to process
parameter variations, than the open loop ones.

6. CONCLUSIONS AND FUTURE
DIRECTIONS

Modelling and control design of an elastic servo
positioning drive have been discussed in this pa-
per. By feeding back only the motor position it
is relatively easy to obtain satisfactory control
of the motor position and velocity. Nevertheless
this does not guarantee a satisfactory control of
the load position and velocity for demanding mo-
tion control applications. This happens especially
during slow motion, when the frequencies of the
pulsating disturbances generated by the motor
and by the gear reducer match, and thus the servo
structural resonance is excited.

It has been shown how to design the widely used
P/PI control to achieve a balanced trade off be-
tween a fast motor response and a damped behav-
ior of the load position. This helps matching the
strong requirement of a smooth, non oscillating,
slow velocity motion, typical of robotics, machine
tools and other applications, but also points out
the limits of P/PI control. P/PI control happens
to be rather robust with respect to system param-



eter variations but its performance may not be
fully satisfactory in those applications where the
load velocity ripple is a major problem. To this
purpose a new way to exploit a notch filter has
been proposed, that not only prevents harmonic
signals (at the notch frequency) from entering the
velocity loop but also improves the damping of
the closed loop (dominant) poles.

7. REFERENCES

Armstrong-Hélouvry, B.,
P. Dupont and C. Canudas de Wit (1994). A
survey of models, analysis tools and compen-
sation methods for the control of machines
with friction. Automatica 30(7), 1083–1138.

Ferretti, G., G. Magnani and P. Rocco (1998).
Modelling, identification and compensation of
pulsating torque in permanent magnet ac mo-
tors. IEEE Transactions on Industrial Elec-
tronics 46(6), 912–920.

Ferretti, G., G. Magnani and P. Rocco (2001).
Alternatives in precise load motion control
of two-mass servomechanisms. In: Proc. of
2001 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics. Como,
Italy. pp. 893–898.

Forrest-Barlach, M. G. and S. M. Babcock (1986).
Inverse dynamics position control of a compli-
ant manipulator. In: Proc. of 1986 IEEE In-
ternational Conference on Robotics and Au-
tomation. pp. 196–205.

Godler, I., K. Ohnishi and T. Yamashita (1994).
Repetitive control to reduce speed ripple
caused by strain wave gearing. In: Proc. of
IECON ’94. Bologna, Italy. pp. 1034–1038.

Hanselman, D. (1991). Techniques for improv-
ing resolver-to-digital conversion accuracy.
IEEE Transactions on Industrial Electronics
38(6), 501–504.

Holtz, J. and L. Springob (1996). Identification
and compensation of torque ripple in high-
precision permanent magnet motor drives.
IEEE Transactions on Industrial Electronics
43(2), 309–320.

Jahns, T. M. and W. L. Soong (1996). Pulsat-
ing torque minimization techniques for per-
manent magnet ac motor drives - a review.
IEEE Transactions on Industrial Electronics
43(2), 321–330.

Lee, H. S. and M. Tomizuka (1996). Robust mo-
tion controller design for high-accuracy po-
sitioning systems. IEEE Transactions on In-
dustrial Electronics 43(1), 48–55.

Lorenz, R. and K. Van Patten (1991). High-
resolution velocity estimation for all-digital
ac servo drives. IEEE Transactions on Indus-
trial Applications 27, 701–705.

Lozano, R. and B. Brogliato (1992). Adaptive con-
trol of robot manipulators with flexible joints.

IEEE Transactions on Automatic Control
37, 174–181.

Marino, R. and M. W. Spong (1986). Nonlinear
control techniques for flexible joint manipula-
tors: a single link case study. In: Proc. of 1986
IEEE International Conference on Robotics
and Automation. pp. 1030–1036.

Nicosia, S. and P. Tomei (1991). A pd control
for trajectory tracking of flexible joint robots.
In: Proc. of 1991 IFAC Symposium on Robot
Control. Vienna, Austria. pp. 255–260.

Ohnishi, K. (1989). Application of advanced con-
trol techniques in electrical drives. In: Proc.
of 1989 Workshop on Microcomputer Control
of Electrical Drives. Trieste, Italy. pp. 1–24.

Ohnishi, K., M. Shibata and T. Murakami (1996).
Motion control for advanced mechatronics.
IEEE/ASME Transactions on Mechatronics
1, 56–67.

Schmidt, P. B. and R. Lorenz (1992). Design
principles and implementation of acceleration
feedback to improve performance of dc drives.
IEEE Transactions on Industrial Electronics
28, 595–599.

Spong, M. (1987). Modeling and control of elastic
joint robots. ASME Journal of Dynamic Sys-
tems, Measurements, and Control 109, 310–
319.

Tomei, P. (1990). An observer for flexible joint
robots. IEEE Transactions on Automatic
Control 36, 739–743.

Umeno, T. and Y. Hori (1991). Robust speed
control of dc servomotors using modern
two degrees of freedom controller design.
IEEE Transactions on Industrial Electronics
38(5), 363–368.

Umeno, T., T. Kaneko and Y. Hori (1993). Ro-
bust servosystem design with two degrees of
freedom and its application to novel motion
control of robot manipulators. IEEE Trans-
actions on Industrial Electronics 40(5), 473–
485.

Vukosavic, S. N. and R. Stojic (1998). Suppression
of torsional oscillations in a high-performancs
speed servo drive. IEEE Transactions on In-
dustrial Electronics 45, 108–117.

Yao, B., M. Al-Majed and M. Tomizuka (1997).
High performance robust motion control
of machine tools: an adaptive robust con-
trol approach and comparative experiments.
IEEE/ASME Transactions on Mechatronics
2(2), 63–76.


