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Abstract: Experimental results on industrial applications of the MUSMAR adaptive Predic-
tive Controller are reported in this paper. They concern superheated steam temperature control
in a thermoelectric power unit, oil temperature control in a distributed collector solar field,
and trailing center line rate of cooling in a arc welding process. The processes considered are
described, with an emphasis on the explanation of the difficulties met in the control problems
associated to them. It is stressed that the examples presented in the paper are all based on
experiments performed on actual full scale plants.Copyright c©2002 IFAC.
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1. INTRODUCTION.

The MUSMAR algorithm embodies an adaptive pre-
dictive controller developed in tight connection with
LQ stochastic control. Although only a local conver-
gence theory is available, a number of properties have
shown to hold under typical operating conditions of
process control applications. While some properties
are common to other adaptive predictive controllers,
others are peculiar to MUSMAR, making it a powerful
tool for process control. In particular, the use of mul-
tiple identifiers, embodied in MUSMAR, proves to be
a key feature in this respect. By multiple identifiers it
is understood that the control synthesis and adaptation
mechanism does not rely on a single model. Instead,
a set of models separately estimated from plant data
and suitably combined are used for control synthesis.
The redundancy thereby introduced is a keystone for
MUSMAR properties.

This paper presents and discusses experimental case
studies performed with MUSMAR in three differ-

1 Part of this work has been done under POSI/SRI/36328 and under
POSI, IIIrd EC Framework Program.

ent industrial plants. They concern superheated steam
temperature control in a thermoelectric power unit,
oil temperature control in a distributed collector solar
field, and trailing center line rate of cooling in a arc
welding process.

The processes considered are described, with an em-
phasis on the explanation of the difficulties met in
the control problems associated to them. These in-
clude unmodelled dynamics, uncertain and varying
long input/output transport delay, colored noise, non-
linear effects, unpredictable changes in dynamics and
fast acting strong disturbances due to stochastic loads.
By means of experimental results it is shown how
MUSMAR is able of tackling these difficulties lead-
ing to an increased performance when compared to
other control techniques. In what concerns the su-
perheated steam temperature process, it is shown
that, with respect to an optimized standard controller,
MUSMAR yields a reduction by a factor of 3 of the
fluctuations around the set-point. Furthermore, MUS-
MAR equipped with feed-forward from accessible
disturbances is capable to tackle efficiently fast load
changes. In what concerns the distributed collector
solar field, it is shown how a cascade of MUSMAR
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controllers operating at different sampling rates is ca-
pable to tackle a very long and time varying plant
transport delay. Finally, for the welding process, it is
shown that it is not possible to find a unique linear
controller which is able to stabilize the whole class
of possible plant outcomes. This is made by applying
a simple robust stability result to experimental esti-
mates of plant uncertainty and motivates the use of
adaptive control. Opposite to what happens when PID
or pole placement controllers are used, MUSMAR
yields a satisfactory performance. It is stressed that
the examples presented in the paper are all based on
experiments performed on actual full scale plants.

2. THE MUSMAR ADAPTIVE PREDICTIVE
CONTROLLER.

The MUSMAR controller (Grecoet al., 1984; Mosca,
1995) is based on a number of separately estimated
predictive models. In the presence of plant/model mis-
matches, such as the situations found here, the redun-
dancy thereby introduced proves important for achiev-
ing a correct control action (Moscaet al., 1989). This
multiple model approach is a distinctive feature with
respect to other approaches to predictive adaptive con-
trol, relying on the adaptation of a single model from
which others are then obtained.

In (Grecoet al., 84, 1984) it is shown that MUSMAR
is equivalent to a bank of parallel self-tuners, each
one tuned to a different value of plant delay and with
different weights. If the actual plant delay is bigger
than the delay assumed for a given self-tuning channel
the corresponding weight will be zero. Insensitivity to
uncertainty in plant delay is thus achieved up to some
degree.

2.1 MUSMAR algorithm

The MUSMAR algorithm (Grecoet al., 84, 1984)
reads as follows:

At the beginning of each sampling intervalt (discrete
time), recursively perform the following steps:

1.Sample plant output,y(t) and compute the tracking
errorỹ, with respect to the desired set-pointy∗(t), by:

ỹ(t) = y∗(t)− y(t) (1)

2.Using Recursive Least Squares (RLS), update the
estimates of the parametersθj , ψj , µj−1 andφj−1 in
the following set of predictive models:

ỹ(t + j) ≈ θju(t) + ψ′js(t) (2)

u(t + j − 1) ≈ µj−1u(t) + φ′j−1s(t) (3)
j = 1, . . . , T

where≈ denotes equality in least squares sense and
s(t) is a sufficient statistic for computing the control,
hereafter referred as the pseudo-state, given by

s(t) = [ỹ(t) . . . ỹ(t− n + 1) u(t− 1) . . . u(t−m)

w1(t) . . . w1(t−nw1) . . . wN (t) . . . wN (t−nwN )1]′

(4)
where thewi are samples of auxiliary variables such
as intermediate process variables or accessible distur-
bances. Since, at timet, ỹ(t + j) andu(t + j) are not
available forj ≥ 1, for the purpose of estimating the
parameters, the variables in (2,3) are delayed in block
of T samples. The estimation equations are thus,

K(t) =
P (t− 1)ϕ(t− T )

1 + ϕ′(t− T )P (t− 1)ϕ(t− T )[1− β(t)]
(5)

P (t) = [I −K(t)ϕ′(t− T )(1− β(t))]P (t− 1) (6)

and, forj = 1, . . . , T :

Θ̂j(t) = Θ̂j(t−1)+K(t)[y(t−T+j)−Θ̂j(t−T )′ϕ(t−T )]
(7)

for j = 1, . . . , T − 1:

Ω̂j(t) = Ω̂j(t−1)+K(t)[u(t−T+j)−Ω̂j(t−T )′ϕ(t−T )]
(8)

In these equations,̂Θj represents the estimate of the
parameter vector of the output predictors, given at
each discrete time and for each predictorj by

Θ̂j = [θj ψ′j ]
′

andϕ(t − T ) represents the regressor, common to all
predictors, given by

ϕ(t− T ) = [u(t− T ) s′(t− T )]′

Similarly, Ω̂j represents the estimate of the parameter
vector of the input predictors, given at each discrete
time and for each predictorj by

Ω̂j = [µj φ′j ]
′

Note that, since the regressorϕ(t − T ) is common
to all the predictive models, the Kalman gain update
(5) and the covariance matrix update (6) are also
common to all the predictors and need to be performed
only once per time iteration. This greatly reduces the
computational load.

The variableβ(t) denotes the quantity of information
discarded in each iteration, being given according to a
directional forgetting (Kulhav́y, 1987) scheme by

β(t) = 1− λ +
1− λ

ϕ′(t− T )P (t− 1)ϕ(t− T )

whereλ is a constant to be chosen between0 (com-
plete forgetting) and1 (no forgetting) which deter-
mines the rate of forgetting in the direction of incom-
ing information. In practice, a factorized version is
used to implement eq. (5).

3.Apply to the plant the control given by

u(t) = f ′s(t) + η(t) (9)

whereη is a white dither noise of small amplitude and
f is the vector of controller gains, computed from the
estimates of the predictive models by

f = − 1
α

(
T∑

j=1

θjψj + ρ

T−1∑

j=1

µjφj) (10)



with the normalization factorα given by

α =
T∑

j=1

θ2
j + ρ(1 +

T−1∑

j=1

µ2
j ) (11)

2.2 Guidelines for MUSMAR configuration.

The choice of the variables and the number of their
past samples enterings(t) defines the structure of the
controller. The choice ofn andm should be such that
it allows to capture the dominant dynamics of the sys-
tem. Too big values ofn andm imply more parameters
to estimate and this may lead to identifiability prob-
lems, in turn causing loss of control performance. Due
to the separate estimation of the predictive models,
MUSMAR is able to tackle the situation in which the
controller gains are to be tuned in the (local) mini-
mum of a steady state quadratic cost, constrained to
thea priori chosen controller structure (Moscaet al.,
89, 1989). The pseudo-states(t) also includes samples
of auxiliary variables. The best choice for the number
of samples in each of these samples is found in each
case by trial and error, first in simulation and then
adjusted according to plant experiments. The value
of the prediction horizonT should be large enough
so that the gains are close approximations to steady-
state (infinite horizon) LQ optimal gains. However, if
T is too large, predictive model parameter estimates
loose accuracy and this results in gain de-tuning and
consequent loss of performance. A trade-off has thus
to be made for choosingT .

3. SUPERHEATED STEAM TEMPERATURE
CONTROL.

Tests on superheated steam temperature control have
been conducted at the Barreiro thermoelectric power
plant of CPPE (Companhia Portuguesa de Produção
de Electricidade/EDP Group). The steam coming from
the boiler drum passes through the low temperature
superheater (LTSH) and receives a spray water in-
jection before passing through the high temperature
superheater (HTSH) to the steam collector. From the
collector, the steam is extracted for use, either by the
turbine or by industrial users. These induce frequent
and unexpected load changes in their normal mode
of operation. The process variable to be controlled is
y = Tvsato, the steam temperature at the output of
HTSH. The manipulated variable isu = Cvgij , the
command of the spray water valve, which influences
the spray water flow,Cgij . When the spray water
valve opens, the flowCgij increases and the steam
temperature decreases. The measureTvsati of steam
temperature after spray water injection and before the
HTSH is available and is used for feedback. The action
of the manipulated variable onTvsati is fast. The influ-
ence of a change ofTvsati on Tvsato is much slower.
This dynamics is influenced by the load imposed on
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Fig. 1. Superheated steam: Steam temperature.

the system, the super heated steam flow,Cvsato. Both
Cvsato and the inflow of air to the furnace,Cafrn,
disturb the system.

The standard control structure consists of a PI/PID
cascade controller with feed-forward. The inner loop
(with faster dynamics) controlsTvsati by manipu-
lating the valve command,Cvgij . The outer loop
(slower) controlsTvsato by manipulating the set-point
of the inner loop. This set point is also affected by the
accessible disturbance measurements of steam flow,
Cvsato, and fuel flow,Ccfrni.

3.1 Superheated steam: Experimental results.

Figs. 1 up to 3 document an experiment performed
with MUSMAR on the superheated steam plant. Fig.
1 shows (above) the superheated steam temperature
superimposed on the set-point of534oC and (below)
the command signal of the spray water signal (manip-
ulated variable, expressed in percentage of opening
with 0% corresponding to valve closed and 100% to
valve fully open). Time is in [hour]. MUSMAR pa-
rameters were selected according to:T = 15, n = 3,
m = 2, andλ = 0.998. The sampling period was
selected at5 s. The standard deviation of the dither
noiseη is 1% of the maximum opening of the valve.
Initially, ρ = 0.02. Besides the samples of the plant
output and manipulated variable, the pseudo-state also
includes as auxiliary variables one sample ofTvsati

(steam temperature after the spray water injection and
before the superheater), and the last two measured
samples ofCvsato (flow of steam) andCafrni (flow of
air at the input of the furnace). Experiments revealed
that the inclusion of these auxiliary variables, which
actually provide an adaptive feed-forward effect, is of
paramount importance for obtaining a good perfor-
mance. In this respect, it should be kept in mind that
steam flow is usually continuously varied by industrial
users.

The experiment starts with the standard cascade con-
troller connected. At 19.85 h the adaptive controller is
turned on. After a startup transient due to adaptation,
the gains are adjusted so that a noticeable reduction
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in temperature fluctuations is observed. This happens
despite persistent and strong disturbances due to the
steam flow variations.

The startup transient is readily seen in fig. 2. This
figure shows the trace of the covariance matrix of
the RLS identifiers (above, in logarithmic units) and
one of the controller gains (below). At 20.7 hρ was
reduced to 0.01 and the controller gains were adjusted,
as seen in fig. 2. This resulted in a closer set-point
tracking but with increased variation of the manipu-
lated variable, which passed fromE[u2] = 4.4 with
ρ = 0.02 to E[u2] = 6.1 with ρ = 0.01. At 21.1
h adaptive control was disconnected, standard control
was applied again and temperature fluctuations greatly
increased. It is interesting to look at the autocorrela-
tion function of the output temperature signal in the
three segments whenρ = 0.02, whenρ = 0.01 and
the last segment in which standard control is applied.
These are seen in fig. 3. The autocorrelation when
standard control is used clearly indicates an oscilla-
tory behavior. Temperature samples well separated in
time have a strong correlation and this indicates that
control can be improved by taking advantage of this
fact. When MUSMAR withρ = 0.02 is applied, the
autocorrelation decays monotonically, faster then in
the previous case, and then stays close to zero. The
same happens whenρ = 0.01, but the decay is now
even faster. In the ideal case where the steam tempera-

ture is an uncorrelated signal (added to a constant) no
further improvements in tracking the set-point would
be possible. This situation would correspond toρ = 0
and a convenient choice of the pseudo-state orders.
By using the method described in (Harris, 1989) it
is possible to estimate how far the various situations
are from ideal minimum variance. Applying this pro-
cedure it is found that the ratio of temperature mea-
sured variance to ideal minimum variance is: 417 with
standard control, 22 with MUSMAR,ρ = 0.02 and
7 with MUSMAR, ρ = 0.01. It should be stated that
ideal minimum variance is not acceptable because it
would lead to an excessive control action, resulting
in valve wearing. Instead MUSMARρ = 0.01 leads
to a control action which is considered completely
acceptable by plant operating staff.

4. CASCADE CONTROL IN A SOLAR FIELD.

Cascade control is a classical structure in process con-
trol. It explores the situation in which the system to
be controlled can be split in two series subsystemsP1

andP2 with the dominant time constant ofP1 being
much faster than the dominant time constant ofP2.
Two controllersC1 and C2 are connected such that
the manipulated variable ofC2, u2, is the set-point
of C1, thus forming two nested loops. Furthermore,
in a computer control framework, again exploring the
difference between the dominant time constants ofP1

andP2, these subsystems are sampled at different rates
h1 and h2, with h2 > h1. In this example, exper-
imental results are presented on the application of a
cascade control structure to the oil outlet temperature
in a distributed collector solar field. Both loops of the
cascade employ MUSMAR. The use of MUSMAR to-
gether with the above mentioned multi-rate sampling
scheme provides an alternative way of controlling this
plant which is particularly effective in the outer loop
where a long, time varying, pure delay is present. The
plant to be controlled consists of a distributed solar
collector field (manufactured from ACUREX) which
is part of Plataforma Solar de Almeria, located in the
south of Spain. The field is made of 480 cylindric
collectors of parabolic type, which concentrate the
solar radiation in a metallic pipe located along their
focus. The metallic pipe contains a fluid (oil) which
serves as an energy storage medium. The collectors
are organized in 10 parallel loops placed along an east-
west axis and are provided of a sun elevation tracking
mechanism. The oil to be heated is extracted from the
bottom of a storage tank and is pumped through the
collector loops. At the other end, the outlet of the loops
is collected in a passive pipe and brought back to the
storage tank, where it enters at the top. The passive
pipe introduces a long delay. The oil pump is provided
with a local controller so that it can be assumed that oil
flow is the manipulated variable, ranging from2l/s to
9l/s. The main process variable is the temperature of
the oil entering the storage tank. In a cascade control
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Fig. 4. Solar field: Temperature control using the
MUSMAR multi-rate cascade algorithm.

framework, the average of the temperatures at the out-
let of the loops is taken as the intermediate variable.
In this way, the dynamics is decomposed in two parts:
The dynamics of the collector loops, which relate the
oil flow to T ; and the dynamics of the pipe connecting
the outlet of the loops with the inlet of the storage tank,
which relates the temperatures in both points. The
former corresponds to the faster time constant (with
a value of about 3 minutes). The latter corresponds
to the slower time constant (in this case a pure delay
of about 9 minutes in series with a time constant of
about 2 minutes). With cascade control, the problems
of rejecting disturbances in both subsystems are split
apart.

Fig. 4 shows experimental results obtained with cas-
cade multi-rate MUSMAR control. In this experiment
bothT1 andT2 (the prediction horizons on both MUS-
MAR controllers in fig.4) were made equal to 15
samples. This value was found from previous exper-
iments and simulation to be adequate. The sampling
intervals wereh1 = 15 sec, h2 = 60 sec. Whenh2

increases, the pure delay inP2, measured in number of
samples, decreases. The orders were set equal in both
controllers and given byni = 3, mi = 2. The control
weightρi is set equal to0.001 in both controllers and
the variance of the dither noise was 0.01. The pure
delay is apparent in fig. 4, where the heat loss in the
pipe connecting the outlet of the collector loops to the
storage tank is also seen. The outer loop controller
adjusts the set-point of the inner loop, such thaty1 is
high enough to compensate for the thermal losses in
the pipe and let the temperature at the inlet of the tank
be equal to the set-point.

5. ARC WELDING CONTROL.

A schematic view of the experimental set-up used for
the arc welding control example is shown in fig. 5.
The objective of the arc welding control example is to
lay a seam of soldier over a metallic piece, such that
the rate of cooling (which determines the mechanical
properties of the seam) is kept constant. The manipu-
lated variable is the welding voltage. Further details
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Fig. 5. Trailing centerline temperature measurement
set-up.
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Fig. 6. Arc welding: Experimental results with MUS-
MAR on a12 mm plate.

and examples on the use of MUSMAR, as well as
references on other types of approach may be found
in (Santos, 2000). The dynamic behavior of the weld
bead centerline temperature is modelled by a set of
energy conservation equations describing the energy
accumulation in the bead and in the workpiece. The
dynamics is actually complex, being affected by vari-
ous effects, including reflection of heat waves depend-
ing on the geometry of the pieces to weld. It may be
shown (Santoset al., 00, 2000) that it is impossible
for a fixed gain controller to meet a robust stability
specification, a fact naturally leading to an adaptive
control approach.

The sampling frequency was chosen asFs = 3 Hz,
the forgetting factor isλ = 0.98, the prediction
horizon isT = 10 and the weight on the input penalty
is ρ = 500. Results obtained on a12 mm piece show
that MUSMAR is able to stabilize the plant yielding
an acceptable performance. These are shown on fig. 6.
In this example the value ofρ has the valueρ = 2000
in order to reduce excessive control action. In order
to cancel the tracking offset, a parallel integrator has
been inserted.

6. CONCLUSIONS.

This paper shows how MUSMAR, a predictive adap-
tive control algorithm based on multiple identifiers,
can be used to tackle difficulties often found in in-
dustrial processes. These include high levels of un-



certainty due to unmodelled plant dynamics, uncertain
and/or time varying dynamics, fast acting strong dis-
turbances and plants which may not be stabilized by
controllers designed by minimizing single-step costs.
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Gonçalves (2000). Adaptive regulation of super-
heated steam temperature: A case study in an
industrial boiler.Control Eng. Practice, 8:1405-
1415.


