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Abstract: An extensive research activity have been devoted to the problem of induction motor
control over the last decade. Most of the proposed controllers have been designed under
the assumption that the motor is unsaturated. As this is not the case in realistic situations
the expected performances, especially during transient periods, may not be achieved. In
this paper, an adequate model that rigorously accounts for the saturation feature in the
AC machine with uniform air-gap. Then, a controller is designed using the backstepping
technique combined with the usual flux orientation. The obtained controller is shown to meet
its objectives, namely motor regional stabilization, reference speed tracking and reference
flux regulation.
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1. INTRODUCTION

Induction motor control has been dealt with follow-
ing different approaches. These includes simple lin-
ear techniques such as field oriented control (Vas,
1986) and more involved nonlinear techniques like
input-output linearization (Chiasson, 1995)-(Morino
and Tomei, 1995), backsteping (J. Hu and Qu, 1996)-
(M. Krstic and P. Kokotovic John Wiley, 1996), (Tan
and Chang, 1999), passivity (R. Ortega and Espinosa-
Perez, n.d.), sliding mode (J. Hu and Q, 1994). The
proposed controllers achieved speed tracking and flux
regulation for unsaturated induction motors. Indeed,
these controllers are designed under the ideal assump-
tion that the magnetic characteristic is linear. To not
violate this assumption, the user have to choose for the
flux a low reference value, which limits the achiev-
able motor couple. Furthermore, ignoring the satura-
tion feature may lead to a deterioration of the control
performances during transient periods.

This paper focuses on the saturation problem in the
induction motor control. The crucial issues are:

i) how the saturation phenomenon is accounted for in
the machine model?

ii) how the saturation phenomenon is deal with in the
control design?

In (Sullivan and Sanders, 1992) aπ-model of the
magnetic circuit is used rather than the standard T-
model. Furthermore, a current-based control is sug-
gested rather than the usual voltage-based control.
Therefore, the pratical implementation of the resulting
regulator necessitates a current DC-AC converter with
all the related shortcomings (e.g. torque harmonics are
generated). These shortcomings are currently avoided
using voltage-based control coupled with PWM DC-
AC converters. From a theoritical viewpoint, there is
no formal analysis of the achieved performances. In
(Heinmann and W.Leonhard, 1990), the starting point
is thestandard unsaturated model. This is further sim-
plified by ignoring the current dynamics (which re-
duces the whole model order) and supposing the stator
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currentisd and isq to be equal to their reference val-
uesidref andiqref . Moreover, the analysis presented
in (Heinmann and W.Leonhard, 1990) lies upon the
crucial assumption that the rotor magnetic fluxΦrd is
a only a function of the currentisd. This assumption
is not realistic because it ignores the cross-saturation
phenomenon; according to thisΦrd is a function of
both the stator current (isd, isq) and the rotor currents
(ird, irq).

This paper presents a more deep investigation of the
control problem for the saturated induction motor. The
controller design includes two major parts. The first
one consists in building up a model that accounts ap-
propriately for the flux saturation. In this respect, it is
well known that a coupling exists between both axes of
an AC-machine, even in the case of a uniform air-gap
machine, (Vas, 1986). Such a phenomenon which is
known as cross-saturation, is caused by the nonlinear
properties of the magntitude materials. As suggested
in (M.S. Garrido and Dejaeger, 1988)-(Roberts, 1988),
the magnetic characteristic is approximated in this pa-
per, by anonlinear function(polynomial, exponential,
arctangent, ...) of themagnetizing currentiµ (which
includes the contribution of both the stator and rotor
currents). Futhermore, contrarily to (Heinmann and
W.Leonhard, 1990), the control model is not derived
from the standard unsaturated model. It is rather de-
veloped from the more rigorous matricial model due
to Von Der Embse (?). The resulting model turns out
to be nonlinear and involves parameters that depend
on the system states. The second part in the controller
design consists in deriving an appropriate control law
based on the saturated machine model. In the present
paper, such a control law is obtained using the back-
stepping design technique combined with the usual
field orientation. The state-dependent parameters of
the nonlinear control model are computed on-line. It
is shown that the resulting closed-loop control system
is locally stable with a well characterized attraction
region. In addition, speed reference tracking and flux
regulation are ensured. To the authors knowledge, it is
the first time that such results are achieved for satu-
rated induction motors.

2. MODELIZATION OF THE SATURATION
PHENOMENON IN AC MACHINE

The magnetic state of the isotropic saturated sinusoidal
machine is completely described by a single magnetic
characteristic that relates the fluxΦ to the magnetizing
currentiµ defined by:

iµ = is + k.ir (1)

where k= kr.nr/ks.ns. Note that such a current in-
cludes the contribution to the fluxΦ of both the stator
and the rotor currents. Let us denoteiµd andiµq the
components ofiµ along thedq axes, i.e.

iµd = isd +k.ird , iµq = isq +k.irq , i2µ = i2µd + i2µq

(2)

The magnetic characteristic has the general form of
figure 11 . It may be approximated using usual math-
ematical functions such as arctangent, exponential or
polynomial. In practice, one can determines points of
this characteristic provided that the machine is un-
charged and controlled by a varying voltage. Actually,
in such operating conditions the magnetizing current
iµ and the fluxΦ can be precisely determined by mea-
suring of the active and reactive power

2.1 Flux equations

In (M.S. Garrido and Dejaeger, 1988)-(Embse, 1968)
it is shown that:

Φs = Φleaking/st + ksnsΦ (3)

= lsis + ksnsΦ = ls.is + λs(iµ) (4)

The nonlinearity of the magnetic characteristicf(.)
gives rise to a coupling between both axes of the
AC machine, this is the cross-saturation phenomenon.
Consequently, it follows from (4) that (M.S. Garrido
and Dejaeger, 1988)-(Roberts, 1988):

Φsd = ls.isd + Md.iµd + Mdq.iµq + φd0 (5)

where:

. ls.isd represents the leakage flux in the stator along
the d-axis,

. Md.iµd represents the flux resulting from the stator
proper flux along the d-axis together with the mutual
flux between the stator d-axis and the rotor d-axis,

. Mdq.iµq represents the mutual flux between the sta-
tor/rotor q-axes, in one hand, and the stator d-axis, in
the other hand,

. φd0 is an additional term introduced in (M.S. Garrido
and Dejaeger, 1988) to defineMd andMdq as being
respectively: ∂λsd

∂iµd
and ∂λsd

∂iµq
. Therefore,φd0

undergoes the equations:

∂φd0

∂iµd
=−∂Md

∂iµd
.iµd − ∂Mdq

∂iµd
iµq (6)

∂φd0

∂iµq
=−∂Md

∂iµq
.iµd − ∂Mdq

∂iµq
iµq (7)

Similarly, one establishes:

1 All figures have been omitted. They will be presented in the
conference.



Φsq = ls.isq + ksnsΦq (8)

= ls.isq + Mq.iµq + Mdq.iµd + φq0 (9)

Φrd = lr.ird + krnrΦd (10)

= lr.ird + k.(Md.iµd + Mdq.iµq + φd0) (11)

Φrq = lr.irq + krnrΦq (12)

= lr.irq + k.(Mq.iµq + Mdq.iµd + φq0) (13)

with φq0 satifying the following equations:

∂φq0

∂iµq
=−∂Mq

∂iµq
.iµq − ∂Mdq

∂iµq
iµd (14)

∂φd0

∂iµd
=−∂Mq

∂iµd
.iµq − ∂Mdq

∂iµd
iµd (15)

2.2 Determination of the varying machine parameters

2.2.1. Static magnetization parameter Following
(M.S. Garrido and Dejaeger, 1988), letm denote the
static magnetization parameter:

m = ks.ns.
Φ
iµ

(16)

In fact, such a parameter characterizes the operating
point on the magnetic characteristic since:

ks.ns.Φ = m.iµ ⇒
{

ks.ns.Φd = m.iµd

ks.ns.Φq = m.iµq

}
(17)

Using (4), one gets from (17) that:

m =
ks.ns.Φq

iµq
=

Φsq − lsisq

iµq
(18)

This shows that the parameterm becomes measurable,
if the following assumptions hold:

H1: The rotor and stator fluxes are measurable.

H2: The coefficientsk, ls, lr, Rr, Rs are known (as
these can be determined performing off-line experi-
ments)

Indeed, it readily follows from H1 and H2 that, except
for iµq, all terms on the right side of (18) are measur-
able. Furthermore, (2, 4) yield:

iµq = isq +k.irq = isq +
k

lr
. (Φrq − k.(Φsq − ls.isq))

(19)

which, together with (18), implies:

m =
Φsq − lsisq

isq

(
1 + k2ls

lr

)
+ k

lr
. (Φrq − k.Φsq)

where all terms on the right side are measurable.

2.2.2. Induction coefficients All the useful induc-
tion coefficients can now be expressed in term of the
the parameterm:

Md =
∂λsd

∂iµd
= m +

∂m

∂iµ
.
i2µd

iµ
(20)

Mdq =
∂λsd

∂iµq
= m +

∂m

∂iµ
.
iµd.iµd

iµ
(21)

Mq =
∂λsq

∂iµq
= m +

∂m

∂iµ
.
i2µq

iµ
(22)

with:

∂m

∂iµ
= ksns.

iµ.
df(iµ)

diµ
− f (iµ)

i2µ

3. CONTROL MODEL FOR THE SATURATED AC
MACHINE

The machine state vector is chosen to be [Φrd, iµd, iµq, ω].
The common alternative is [Φrd, isd, isq, ω]. The for-
mer choice will prove to be convenient in arriving to a
simple model.

3.1 Rotor electrical equation in the dq-axes

0 = Rr.ird +
dΦrd

dt
(23)

On the other hand, one gets from (10) and (17) that:

ird =
1
lr

.(Φrd − k.m.iµd)

which together with (23) yields:

dΦrd

dt
=
−Rr

lr
Φrd +

Rr

lr
k.m.iµd (24)

3.2 Stator electrical equation in the dq-axes

Vsd = Rsisd +
dΦsd

dt
− ωsΦsq (25)

Vsq = Rsisq +
dΦsq

dt
+ ωsΦsd (26)

After several transformations operated on (26), and
involving most of equations in section 2, one gets:

Vsq = (b1 + ab́1ωs).iµq + (ab2 + b́1ωs).iµd + b3.
diµd

dt

+(ab4 + b́4ωs).Φrd + a.Vsd (27)

with: b1 = Rs

(
1 + k2m

lr

)
; b́1 = ls + m +

k2lsm
lr

; b2 = −Rs

(
1 + k2m

lr

)
+ k2lsmRr

l2r
; b3 =



Mdq

(
1 + k2ls

lr

)
+ a.b́3; a =

ls+Mq

(
1+ k2ls

lr

)

Mdq

(
1+ k2ls

lr

) ; b́3 =

−ls−Md

(
1 + k2ls

lr

)
; b4 = Rs.k

lr
− klsRr

l2r
; b́4 = −kls

lr

and:

ωs = ω +
Rr

Φrd

km

lr
iµq (28)

It is worth noticing that equation (28) is introduced to
enforce the orientation of the rotor flux along the d-
axis; so doing its q-component turns out to be null.

From (27), it readily follows thatiµd undergoes the
following differential equation:

diµd

dt
=−b1 + ab́1ωs

b3
.iµq − ab2 + b́2ωs

b3
.iµd (29)

−ab4 + b́4ωs

b3
.Φrd − a

b3
.Vsd +

1
b3

.Vsq(30)

Furthermore, combining (25), (29) and others from
section 2, one gets:

diµq

dt
= (g1 + ǵ1ωs).Φrd + (g2 + ǵ2ωs).iµd (31)

+(g3 + ǵ3ωs).iµq + g4.Vsd + g5.Vsq (32)

with g1 = g0.b4(1 − b́3
b3

); g0 = 1
Mdq

lr
k2ls+lr

; ǵ1 =

−g0.
b́3b́4
b3

; g2 = g0.b́2(1 − b́3
b3

); ǵ2 = −g0.
b́3b́2
b3

;

g3 = −g0.
b́3b́1
b3

; ǵ3 = g0.b́1(1 − b́3
b3

); g4 = 1 − ab́3
b3

;

g5 = b́3
b3

.

3.3 Mechanical equation

The generated electromagnetic torque undergoes the
same equation as in the unsaturated case, i.e.:

Te = Φrqird − Φrdirq

As noticed earlier, condition (28) ensures thatΦrq =
0, that is:

Te = −Φrdirq = Φrd
km

lr
iµq

The rotor motion equation turns out to be:

dω

dt
=

1
J

.(Φrd
km

lr
iµq − TL) (33)

The saturated AC machine model thus developped is
constituted of equations (24), (29), (32), (33), (28). For
convenience, these are rewritten:

dω

dt
=

1
J

.(Φrd
km

lr
iµq − TL) (34)

diµq

dt
= (g1 + ǵ1ωs).Φrd + (g2 + ǵ2ωs).iµd (35)

+(g3 + ǵ3ωs).iµq + g4.Vsd + g5.Vsq (36)

diµd

dt
=−b1 + ab́1ωs

b3
.iµq − ab2 + b́2ωs

b3
.iµd (37)

−ab4 + b́4ωs

b3
.Φrd − a

b3
.Vsd +

1
b3

.Vsq(38)

dΦrd

dt
=
−Rr

lr
Φrd +

Rr

lr
k.m.iµd (39)

ωs = ω +
Rr

Φrd

km

lr
iµq (40)

4. BACKSTEPPING CONTROL DESIGN

The controller is designed using the backstepping tech-
nique. This is done in two steps: first, the above ma-
chine model is reformulated in terms of appropriate
tracking and control errors. The performance-oriented
model thus obtained suggests a Lyapunov function
which is based upon to obtain, in the second step, a
stabilizing control law.

4.1 Step 1.

Let us introduce the tracking errors on the rotor flux
and speed:

e1 = Φrd − Φref (41)

z1 = ω − ωref (42)

whereΦref andωref denote the corresponding refer-
ence signals. We first focus on the flux tracking error.
In view of (24), time-derivation of (41) gives:

ė1 = −Rr

lr
Φrd − Φ̇ref +

Rr

lr
k.m.iµd (43)

where the last term will be considered as a virtual con-
trol input. This motivates definition of the following
control error definition:

e2 =
Rr

lr
k.m.iµd − α1 (44)

whereα1 is a stabilizing function to be defined later.
Substituting (44) in (43) yields:

ė1 = −Rr

lr
Φrd + e2 + α1 − Φ̇ref (45)

If the virtual control Rr

lr
k.m.iµd where effective (in

which casee2 = 0) then the stabilizing function :

α1 = −c1e1 +
Rr

lr
Φrd + Φ̇ref (46)



would force the flux tracking error to undergo the
equation̊e1 = −c1.e1 (with any design real parameter
c1 > 0). Unfortunately, Rr

lr
k.m.iµd cannot be the

effective control becauseiµd is a state variable. Then
e2 6= 0 and, consequently, the stabilizing function
(46), together with (45), only gives:

ė1 = −c1e1 + e2 (47)

Now, let us focus on the speed tracking errorz1 = ω−
ωref . Time-derivation ofz1 implies, due to (34):

ż1 =
k.Φrd

j.lr
.m.iµq − 1

J
Cr − ω̇ref (48)

Similarly, we introduce the control error:

z2 =
k.Φrd

J.lr
.m.iµq − γ1 (49)

whereγ1 is a stabilizing function to be defined later.
Substituting (49) in (48) gives:

ż1 = z2 + γ1 − 1
J

Cr − ω̇ref (50)

As previously, if k.Φrd

J.lr
.m.iµq where an effective con-

trol (in which casez2 = 0) then the stabilizing func-
tion

γ1 = −d1z1 +
1
J

Cr + ω̇ref (51)

would ensure forz1 the trajectorẙz1 = −d1.z1 (where
d1 > 0 is any design real parameter). As, k.Φrd

J.lr
.m.iµq

cannot be an effective control (which means thatz2 6=
0), the stabilizing control (51) together with (50), only
yields:

ż1 = −d1z1 + z2 (52)

4.2 Step2

Deriving the errore2, with respect to time readily
yields, due to equation (44):

ė2 = k.
Rr

lr
.

(
ṁ.iµd + m.

diµd

dt

)
− α̇1 (53)

Now, from (17,2) and (46) one gets:

ṁ =
dm

diµ
.
1
iµ

.

(
iµd.

diµd

dt
+ iµq.

diµq

dt

)
(54)

α̇1 =−c1e2 + c1e
2
1 +

Rr

lr
.Φ̇rd + Φ̈ref (55)

Substituting (54),(55),(36),(38) and (39) in (53) gives:

ė2 = β1 + λ1.vsd + λ2.vsq (56)

whereβ1 includes all measurable quantities, i.e.:

β1 = k.Rr

lr
Md[− b1+b́1ωs

b3
.iµq− b2+b́2ωs

b3
.iµd − b4+b́4ωs

b3
.Φrd]

+

k.Rr

lr
.(Mdq−m).[(g1+ǵ1ωs).Φrd+ (g2+ǵ2ωs).iµd+

(g3 + ǵ3ωs).iµq]

+c1e2 − c1e
2
1−

(
Rr

lr

)2

. (−Φrd + k.m.iµd) + Φ̈ref

and:

λ1 = −k.
Rr

lr

[
Md

a

b3
− (Mdq −m).g4

]
(57)

λ2 = k.
Rr

lr

[
Md.

1
b3

+ (Mdq −m).g5

]
(58)

Similarly, due to (49), time-derivation of the speed
control error z2 gives:

z̊2 =
k

j.lr
.

(
Φ̇rd.m.iµq + Φrd.ṁ.iµq + Φrd.m.

diµq

dt

)
−γ̇1

(59)

Then, using (39), (36), (38), (54) and (51), equation
(59) becomes

ż2 = β2 + λ3vsd + λ4vsq (60)

whereβ2 includes all measurable terms:

β2 = k
J.lr

.m.iµq.
Rr

lr
. (−Φrd + k.m.iµd)+ d1z2 −

d2
1z1 − 1

J T̊L − ω̈ref

k
J.lr

.Φrd.Mq.[(g1 + ǵ1ωs).Φrd + (g2 + ǵ2ωs).iµd +
(g3 + ǵ3ωs).iµq] +

+ k
J.lr

.Φrd.(Mdq−m) [− b1+b́1ωs

b3
.iµq− b2+b́2ωs

b3
.iµd−

b4+b́4ωs

b3
.Φrd]

and

λ3 = − k

J.lr
.Φrd.

(
(Mdq −m).

a

b3
+ Mqg4

)
(61)

λ4 =
k

j.lr
.Φrd

(
(Mdq −m).

1
b3

+ Mqg5

)
(62)

To analyse the error system (47), (52) ,(56) and (60),
let us consider the Lyapunov function:

V (X) =
1
2
e2
1 +

1
2
e2
2 +

1
2
z2
1 +

1
2
z2
2 (63)

with X = [e1, e2, z1, z2]
T . Deriving (63), with respect

to time, and using (47), (52), (56) and (60), yields:

V̇ =−c1e
2
1 − c2e

2
2 − d1z

2
1 − d2z

2
2

+e2 (c2e2 + e1 + β1 + λ1.vsd + λ2.vsq)

+z2 (d2z2 + z1 + β2 + λ3vsd + λ4vsq)



This shows that ifvsd andvsq are such that:

[
λ1 λ2

λ3 λ4

]
.

[
vsd

vsq

]
=

[ −c2e2 − e1 − β1

−d2z2 − z1 − β2

]
(64)

then one gets:

V̇ = −c1e
2
1 − c2e

2
2 − d1z

2
1 − d2z

2
2 (65)

which clearly establishes asymptotic stability of the
origin (e1, e2, z1, z2) = (0, 0, 0, 0). The attraction
region is the state domain where the algebraic equation
(64) deos have a solution. It is easily seen that such a
domain includes all states where:

W (X) 6= 0 (66)

with W (X) = λ1.λ4 − λ2.λ3. In such a domain the
control law turns out to be the following:

[
vsd

vsq

]
=

[
λ1 λ2

λ3 λ4

]−1

.

[ −c2e2 − e1 − β1

−d2z2 − z1 − β2

]
(67)

5. CLOSED-LOOP STABILITY ANALYSIS

Theorem 1.Consider the control system consisting of
the above model in closed-loop with the backstepping
control law (67). There exist nonzero boundsc and

δ such that if: 0 < δ < Φref < c,
∣∣∣Φ̇ref

∣∣∣ < c,

|ωref | < c , |ω̇ref | < c and
∣∣TL

J

∣∣ < c; then:

i) the closed-loop system is stable,

ii) the flux and the speed errors,z1 and e1, are
asymptotically vanishing.

Proof. See the full version of the paper.
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