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Abstract: Estimation problem for the stochastic volatility (SV) model, which is sig-
nificant in financial econometrics, is discussed. Recursive relations for computation
of the Cramér-Rao (CR) bound are derived for state and parameter estimation of
this model. An attention is paid to regularity conditions for CR bound calculation.
As the CR bound represents a lower bound of the mean-square error of an estimate,
it can serve as a gauge of quality of nonlinear estimators for the SV model.
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1. INTRODUCTION

The class of the discrete time Stochastic Volatility
(SV) models (Taylor, 1986) has its roots both in
mathematical finance and financial econometrics.
The SV models play the central role in asset re-
turn prediction (Danielsson, 1994; Andersen and
Sgrensen, 1996; Ruiz, 1994) and have become an
attractive class of models and an alternative to
other classes such as Autoregressive Conditional
Heteroscedasticity (ARCH) models (Engle, 1982).
In contrast to ARCH models the asset return vari-
ance representing the volatility is expressed in SV
model separately from the demeaned return as an
unobserved component and its logarithm follows
an AR(1) process. The evaluating of the likelihood
function of ARCH models is a straightforward
task. However it is impossible to obtain explicit
expressions for the likelihood function in the case
of the SV models. Hence the maximum likelihood
(ML) methods are not easy to implement.

The basic approach to a simple SV model es-
timation is the quasi-ML (QML) method devel-

oped by Ruiz (1994) and based on approximate
linear filtering methods. Another approach relies
on the method of moments (MM) (Andersen and
Sgrensen, 1996) to avoid the integration problems
associated with the direct evaluation of the like-
lihood. The Monte Carlo evidence of (Jacquier
et al., 1994) suggests that these standard proce-
dures suffer from poor finite sample performance
because they do not depend on the exact likeli-
hood and provide only optimal linear estimates.
Alternatives based on the exact likelihood are
simulation-based ML (Danielsson, 1994) and non-
linear filtering ML (Watanabe, 1999) methods.
They are computationally intensive, but accord-
ing to the Monte Carlo results of (Jacquier et
al., 1994) outperform QML and MM approaches.

Simandl and Soukup (2001) successfully used the
Gibbs sampler as a non-ML method for state
and parameter estimation for discrete-time SV
models. The Gibbs sampler belongs to the class
of Markov chain Monte Carlo methods (Tanner,
1996) which represent pdf’s by random samples
drawn from these pdf’s.



The performance of the above mentioned methods
can be compared mutually but there is no idea
how close are the estimates to the exact solution.
Hence it would be very valuable to find an ob-
jective limit for performance quality and to gauge
the estimators by their proximity to this limit. For
this purpose, the Cramér-Rao (CR) bound can be
used as a lower limit for the mean-square error of
an estimate.

The CR bound, defined as the inverse of the
Fisher information matrix under regularity con-
ditions, is a common tool for estimate quality
evaluation in constant parameter estimation. Van
Trees (1968) extended the CR bound methodol-
ogy for random parameters estimation and later
the idea of the CR bound was successfully ap-
plied in state estimation for nonlinear stochastic
dynamic systems by Bobrovsky and Zakai (1975)
and Galdos (1980). These works are based on a
certain kind of “equivalence” between pdf’s of the
original nonlinear system and an auxiliary linear
Gaussian system. A survey of methods based on
this approach was presented by Kerr (1989).

An alternative approach to derivation of the CR
bound (called also posterior CR bound) for the
filtering problem in discrete-time nonlinear sys-
tems was proposed by Tichavsky et al. (1998). The
principle of this approach is to regard the state
history as a random parameter vector. The CR
bound for the state is obtained as the lower right
block of the CR bound for the whole state history.
This approach was further elaborated by Simandl
et al. (1999), Bergman (1999) and Simandl et al.
(2001). In the latter work, the recursive relations
for computation of CR bounds for three types
of state estimation, i.e. filtering, smoothing and
prediction (which could be of a particular inter-
est in econometrics), were presented in a unified
form. CR bounds were also derived for combined
state and parameter estimation in (Simandl et
al., 2001).

The aim of the paper is to find recursive relations
for computation of CR bound for the SV model
as an objective gauge for estimator performance
evaluation. The derivation of the bound will be
based on the general results of Simandl et al.
(2001). A special attention will be paid to the
regularity conditions for the SV model.

The paper is organized as follows. After defining
the SV model and formulating the problem in
Section 2, the CR bound is discussed in Section 3.
General recursive relations for filtering CR bound
are presented and the derivation of the bound
for the SV model is performed under regularity
conditions, specified previously. The computation
of the CR bound is shown in a numerical example
in Section 4. The main results of the paper are
summarized in Section 5.

2. PROBLEM STATEMENT
2.1 Discrete-Time SV Model

Consider a simple SV model

Inogy1 =a+blnog + wy, (].)

Y = VOkUk (2)

where y; denotes the demeaned return in the time
instant £k = 0,1,...,f, the variance o is the

volatility of the demeaned return yy, disturbances
u, and wy, are assumed to be mutually indepen-
dent Gaussian white noises with zero means and
variances 1 and ¢ > 0, respectively, and the pa-
rameters a, b, ¢ are random and their description
will be discussed later in Section 3. The volatility
variable oy, is latent and the only observable vari-
able is yj. Note that introducing the term In oy
ensures positiveness of .

2.2 SV Model in State Space Form

A state space representation of (1), (2) can be
given by the following relations

Tp+1 =a + bz + wy, 3)

2k =% + Vg (4)

where the new quantities are defined as z; = InyZ,
7y = Inoy and vy, = Inuj. The state equation (3)
with the log of the volatility o}, as the unobserved
state variable xzj is an alternative representation
of the SV model (1). Note that the observation
noise vy, in (4) is not normally distributed and its
probability density function (pdf) is given by

1 1 Vg
Do (k) = T &P [-5exp )+ 5] ()
where exp(vg) = e . Relation (5) is obtained

by application of the well known formula for
transformation of random variable to vy = In ui
The state noise wy, is the same as in (1),

Puy (wg) = N(wi: 0,q) . (6)

2.3 Estimation Problem and CR Bound

The vector of observations z* = [29 21 ... 2]T is
given. The intention is to find the conditional pos-
terior pdf p(@|z*) of the time-invariant parameter
0 = [a b g]T and the filtering pdf p(xx|z*) of the
unobserved state variable zy for £k = 0,1,..., f.
It is the problem of nonlinear state estimation
and an exact solution is impossible. The general
solution of the state estimation problem, based
on the Bayesian approach, is given by the func-
tional relations for conditional pdf’s of the state.



In this case the extended state vector is defined
as &, = [rx,0"]" and the corresponding state
equation is obviously nonlinear.

The closed-form solution of the state estimation
problem is known only for linear Gaussian sys-
tems (Anderson and Moore, 1979) and a few spe-
cial cases (Simandl, 1996). For that reason many
analytical and numerical approximations of the
system or pdf’s have been developed since the
beginning of the 1970’s (Sorenson, 1974; Soren-
son, 1988; Kulhavy, 1996). The most significant
representatives of such estimation techniques are
the Gaussian sum method and the point mass
method. Their application to the SV model is
infeasible because of the unknown variance g,
or computationally demanding. Another alterna-
tive approach to the numerical solution of the
Bayesian recursive relations is based on the statis-
tical simulation methods, namely the algorithms
of Gibbs sampler (Simandl and Soukup, 2001) and
particle filter (Nagahara and Kitagawa, 1999) ap-
pear to be powerful tools for SV model estimation.

Anyway, the evaluation of the results of any non-
linear filter is necessary. Therefore the aim of this
paper is to find the filtering CR bound Cy,;, for
the SV model, which is the lower bound for mean-
square estimate error matrix Py, i.e.

Crix < Prpe (7
where
P =E{(& — &) & — &) ©®)

and & K|k 18 an arbitrary point estimate of £, given

measurements z*. The inequality (7) means that
P — Cyx is a positive semidefinite matrix.

3. CRAMER-RAO BOUND IN STATE
ESTIMATION

In this section, recursive relations for the filtering
CR bound for the general discrete-time nonlinear
stochastic system with unknown parameters will
be presented according to (Simandl et al., 2001)
and these relations will be used for derivation of
the CR bound for the SV model (3), (4).

3.1 General Relations for CR Bound

Consider the general discrete-time nonlinear sto-
chastic system

Xg+1 = fk (Xka 07 wk) (9)
Zi = 8k (Xk, 0, Vi) (10)

where x;, and z;, with dim(xy) = n and dim(z;,) =
r represent the state and measurement vectors,

respectively, @ = [0 6 ... 0,,]T is a random vec-
tor parameter given by the known twice differ-
entiable pdf p(0), fi(xk, 0, w) and g (xk, 0, Vi)
are known vector functions, {wy} and {v;} are
mutually independent white noise sequences, with
dim(wy) = n and dim(vg) = r, which are de-
scribed by known pdf’s pw,(wg) and py, (vg),
respectively. The noises and the parameter are in-
dependent of the initial state xo which is described
by the known pdf p(xg).

Suppose that the state transition pdf p(x41|xk, 8)
exists and is twice differentiable with respect to its
arguments. Similarly, suppose that the measure-
ment pdf p(zx|xk,0) exists and is twice differen-
tiable with respect to x; and 6.

The derivation of the recursive relations for the
filtering CR, bound for the pair (xi, #) starts with
the expression for the logarithm of the joint pdf

of state history x* = [xg x] ... x;]|T, param-

eter vector @, and measurement history zF =
T,T T

(29 21 ... 2],

Inp(x*,0,2") = % Inp(z;|x;, 0) + Inp(xo)
+ Inp(0) + Zf:l Inp(xi|xi—1,8). (11)

To simplify the notations, the nabla operator will
be defined for a vector k = [k1 k2 ... k¢]T as

vn=[i o .o

Ok1  Okz EZn
and for two vectors k, A the notation V, x =
[Vie Va] will be used.

The Fisher information matrix (FIM) for the state
history x* and the parameter 0 is defined as
JHF(x*,0) = —E{Viek p[Vicr o In p(x"*, 0,2%)]"},
(12)
provided that the expectation and the derivatives
exist. The CR bound C**(x* ) for the state
history x* and the parameter @ is defined as
CHF(x*, ) = [TH*(x*,0)] . (13)
The size of the matrices J**(x*, @), C*l*(x*, )
is [m +n(k + 1)] x [m + n(k + 1)].
The filtering CR bound Cy,;, for (x,8) is found
as the lower-right (n + m) x (n + m) block of
[J¥E(x*,8)]7!. The detailed derivation is shown
in (Simandl et al., 2001). For computation of Cyj,
the following n x n matrices are introduced

Kii 1 = E{=Vi, [V, Inp(x1 x5, O]} (
Kiff_l = E{_ka-H [VXk lnp(karl'Xk’e)]T} (
K’ii} = E{—ka+1[ka+llnp(xk+1|xk, 0)]T}(16
L} = E{=Vix, [V, In p(zx|xx, 0)] "} (
with KL = [REHT,
K§ = E{—Vi,[Vio Inp(x0)] "}, (18)



and

Ki% = E{=Vi,[Vo Inp(xi11[x4,0)]"}  (19)
Ky = E{= Vi, [Vo In p(xi41 %k, 0)] "} (20)
K1 = E{—Vo[Vo Inp(xi11[xx,0)]"}  (21)
L% = E{—Vy,[Ve In p(z1|x1,0)]" } (22)

L{ = E{—V[Ve In p(z1|x1,0)]"} (23)

A =E{-V[VoInp(6)]"} (24)

where LA = [LIFT KK = [KIFT, Kﬁﬂ_l =

[K¢%,]*. The matrices K‘”“ K¢, and L{¥ have
the size m x n, Kk+1, Lk, and A are m X m

matrices, and K§° is an m x n zero matrix.

The indexes in the K matrices have the following
meaning: The lower index k + 1 is the time
instant of the state described by the transition
pdf p(Xk+1|Xk, 0). The upper index expresses the
states or parameters for which the derivatives of
the transition pdf are performed.

Let the inverse of the filtering CR bound be
decomposed in blocks as

Jen J
1 _ (Ykle Yk
Cklk |:Le|k Jk|l;| : (25)

The block elements of C;l}c, as denoted in (25),
obey the following recursive relations

Iifh = Iifer + Li (26)
Jk\k _Jk|k L+ LY (27)
Jk\k _Jk|k L+ LY (28)

where the one-step predictive FIMs are given as

k+1 k+1,k 1y k,k+1
k+1|k - Kk+1 - Kk+1 A Kk:—',—l (29)

(KL KETRAIAY (30

~ AFTATAT (31)

Jk+1|

Jk+1|k = Jk|k +Kip
with
0

Ap = Jih +Ki, A= Jk\k K%, (32)
and A = [AJ]T.
The initial conditions for the recursive relations
(26)-(31) are J§7, = KJ, 3¢, = K§’ =0,
and J gle—l = A. The relations describe a recursive

block-wise computation of the filtering CR bound
for state and parameter estimation.

3.2 Regularity Conditions for SV Model

Before the derivation of the filtering CR bound for
the SV model (3), (4), it is necessary to verify the

regularity conditions, i.e. to examine the existence
of the expectation and derivatives in (12) by
specifying the pdf’s on the right-hand side of (11).
Note that because mean value and derivative are
linear operators, the regularity conditions for (12)
must be fulfilled for each summand in (11).

The computation of transition and measurement
pdf’s is straightforward from (6) with (3) and
(5) with (4), respectively, and the pdf’s have the
following form

P(Try1|TR, ) = N(zpy1: a+ bz, q)  (33)

p(2k|Tk, 0) = po, (2K — Tk) - (34)

Since o is a positive volatility, its initial pdf is

considered to be x? distributed. Then the pdf of
the initial state xq is

pan) = = expl-gep (o) + F] (3)

because zg = In og. Pdf’s of the parameters a and
b are considered as

p(a) = N(a: pa,ca) (36)
p(b) = N(b: pp, cp) (37)

where ¢, > 0, ¢, > 0. It is easy to see that partial
derivatives up to second order of logarithms of
pdf’s (33)—(37) and their expectations exist.

Similarly to volatility 09, the description of pa-
rameter ¢ by the x? distribution seems realistic,
ie. p(q) = \/_exp( ). The second derlvatlve
of Inp(q) is 0.5¢=? which exists for the defined
domain of ¢. However, the expectation of the
second derivative does not exist, because

E{¢ %} = /

and after substitution ¢t =
integral

E{¢~?} = ﬁ /0 T exp(—t)dt (38)

diverges. Hence, another description of ¢ must be
chosen. As the x2 distribution is a special case
of the I' distribution, the I' distribution with
parameters a > 0, 8 > 0 will be examined now;
thus

p(g) =I'(q: 0, 8) =

q
Norer exp(—i) dq
g

it is obvious that the

! Zar N4
pel(a)
where T'(a) is the gamma function of «. In this

case, the second derivative of In p(q) is (1 — a)g~2
and the integral analogous to (38) is

E{¢™*} = [ﬂzr(a)]_l /Ooo t* 3 exp(—t)dt (40)

which exists for @ > 2, and then E{q~2} =

[( = 1)(a —2)5%]7"

a-1 exp(—%) (39)



The analysis has shown that for the pdf’s (33)-
(37) and (39) with a > 2 the regularity conditions
for the SV model are fulfilled.

3.3 CR Bound for SV Model

In order to use the relations for CR bound compu-
tation (26)—(31) for the SV model (3) and (4), the
K, L and A matrices (14)—(24) must be specified.
The transition and measurement pdf’s (33), (34),
and the pdf’s of the initial state and parameters
(35)—(37), (39) are considered in (14)—(24). After
tedious calculations the following expressions are
obtained

Kk+1 (o + p3)E{q™"} 41
Kottt = —mE{q™"} 42

(41)

(42)

Kifi =E{¢ "} (43)

LY = 0.5E{exp (21, — zx)} (44)

K =0.5E{exp (w0)} (45)

K =[wE{g '} E{bg 'ei} 0] (46)

K’ =[-E{¢'} —E{d 'z} 0] (47)
E{g™"} E{g '} 0

K{, . = | E{g 'ax} E{g" 'z} 0 (48)
0 0 0.5E{q~?}
A =diag(c; ', ¢, ', —0.5E{¢™?}) (49)

and Lka La are zero matrices of sizes 1 x 3 and
3 %3, respectlvely. The following expectations in
(41)—(49) can be enumerated analytically:

E{exp (zx — 1)} = E{exp (ve)} = E{uj} = 1(50)
E{exp (z09)} = E{exp(lnog)} = E{oo} =1 (51)

o5} a—1 xp(— —1
E{q—l}:‘/o q—lq € p( qB )dq

BaT (@)
1 °°a_2x B _Tla—-1)
= B )/ T ep() = Zr
= [(@- 1" (52)
q* texp(—gBt)
el = o
a— _ F(Oé - 2)
M(a)fo e dt = T
= [(— 1)(a — 2)87) ! (53)

where in (52), (53) the substitution ¢t = ¢/8
was used. The other expectations, i.e. E{qg™ 'z},
E{bg'z1} and E{g'z}}, must be generated nu-
merically. Their approximations are obtained by
Monte Carlo simulations of the plant (3).

The filtering CR bound for state and parameters
of the SV model can be compared with the mean-
square error matrix Py, of an estimate £y, The
mean-square error matrix must be enumerated
numerically by Monte Carlo simulations.

4. NUMERICAL EXAMPLE

Consider the SV model (3), (4) with the following
specification of its random variables:

c, =0.1
b: iy, cp), where uy = 0.9,¢, = 5-107*

(a: pha,cq), where p, = —1,
(
(q) =I'(q: o, ), wherea =3,6=1/9

and p(zo) is given by (35). The unknown expec-
tations E{q 'z}, E{bg 'z} and E{g 122} in
(46)—(48), where enumerated numerically using
3000 Monte Carlo simulation runs for (3); i.e. the
estimate of E{bq_lmk} is computed as

1 3000 (@)

000 4 () ’

E{bq™ wk}~3 k=0,1,...,50,

where ¢ is an ith simulation run.

Substituting (41)-(49) to (14)-(24), the FIMs
(26)—(31) for state x, and parameters a, b, ¢ given
measurements zF, k = 0,1,...,50, were com-
puted. Using (25), the CR bound matrix Cy is
obtained. The diagonal elements of Cy,;, represent
scalar CR bounds for zy, a, b and g, respectively.
The time development of these bounds is shown
in Figures 1, 2.

5. CONCLUSION

The SV model can be estimated by a variety of
nonlinear estimation methods. However, quality
evaluation of the methods has not been treated
sufficiently. In this paper, the tool for a solution
of the problem is designed. Recursive relations
for the CR bound of the SV model’s state and
three parameters has been derived and regularity
conditions for CR bound computation were ap-
plied to the SV model. The random variables of
the model had to be properly specified to ensure
the regularity conditions. The CR bound in state
and parameter estimation of dynamic systems is
a lower bound for the mean-square error matrix
of an arbitrary point estimate of state and pa-
rameters. Thus, it may be taken for an objective
limit of cognizability of unknown variables of the
system and it is possible to evaluate the quality
of estimators by their proximity to the bound. To
illustrate the computation of the CR bound for SV
model, a numerical example has been included.
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