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Abstract: In this paper, eigenvalue sensitivity measures are proposed that are suitable for
assessing the fragility of digital controllers and filters implemented using floating-point
arithmetic. Floating-point arithmetic parameter uncertainty is shown to be multiplicative.
Based on first-order eigenvalue sensitivity analysis, an upper bound on the eigenvalue
perturbations is derived. Consequently, open-loop and closed-loop eigenvalue sensitivity
measures are proposed. These measures are dependent upon the filter/controller realization.
Problems of obtaining the optimal realization with respect to both the open-loop and the
closed-loop eigenvalue sensitivity measures are posed. The problem for the open-loop
case is completely solved. The problem for the closed-loop case is solved using nonlinear
programming. The problems are illustrated with a numerical example.
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1. INTRODUCTION

The reducing cost and increasing speed of computer
hardware means that there is an increasing tendency
for digital controller implementations to be imple-
mented using machines which utilize floating-point
arithmetic. Although the effects on the control system
due to the finite precision resulting from the finite
word-length have been extensively studied for fixed-
point implementations, see Istepanian and Whidborne
(2001) for a review, there has been little work looking
explicitly at the finite-precision effects for floating-
point digital controller implementations. Some ex-
ceptions include Rink and Chong (1979), Molchanov
and Bauer (1995), Faris et al. (1998) and Williamson
(2001). There has been more work in the signal pro-
cessing area, for example Rao (1996).

It is known that some controller/filter realizations are
very sensitive to small errors in the parameters, and
these small errors may even lead to instability. The
source of the parameter errors is the finite precision
of the computing device. Such controller realizations
can be described as fragile (Keel and Bhattachar-
ryya, 1997). However, a linear system has an infinite
number of equivalent realizations. If a digital linear
system is implemented in the state space form, C

�
zI �

A ��� 1B � D, then CT
�
zI � T � 1AT ��� 1T � 1B � D is an

equivalent realization for any non singular matrix T .
The effect of the finite precision is actually dependent
upon the realization. Thus, in order to ensure a non-
fragile implementation, it is of interest to know the
realization, or matrix T , which minimizes the effect
of the finite precision on the system.

In the next section, floating-point arithmetic is dis-
cussed and shown to result in multiplicative perturba-
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tions on the filter/controller parameters. In Section 3,
an upper bound on the eigenvalue perturbation mag-
nitudes is obtained. In Section 4, a measure of the
relative stability based on this upper bound is proposed
for digital filter implementations, and the problem of
minimising this measure for state space realizations
is solved. In Section 5, a similar measure for closed-
loop controller implementations is proposed. A neces-
sary condition for minimising the measure is obtained.
In the subsequent section, non-linear programming is
shown to be effective for solving the problem.

Notation�
x � denotes the floor function, that is, the largest

integer less than or equal to x
A � B ��� ai jbi j � denotes the Hadamard product of A
and B
AT denotes the transpose of a matrix A
AH denotes the complex conjugate transpose of a
matrix A
vec

�
A � denotes the column stacking operator of a

matrix A�
A
�

F � ∑i � j a2
i j denotes the Frobenius norm of a

matrix A

2. FLOATING-POINT REPRESENTATION

s a1 	
	
	 a �
e b1 	
	
	 b �

m

sign � �� �exponent e � �� �mantissa m

Fig. 1. Floating-point number representation

Numbers in a digital computer are represented by a
finite number of bits – the word-length, ������� . In
a floating-point arithmetic, the word consists of three
parts:

(1) one bit, s, for the sign of the number,
(2) � m ����� bits for the mantissa, m ��� , and
(3) � e ����� bits for the exponent, e ��� .

Therefore, ����� m ��� e � 1. The number is typically
stored as shown in Figure 1, and with this representa-
tion, the value x is interpreted as

x � � m ! 2e (1)

where the mantissa is usually normalized so that m �" #
5 $ 1 � . Now, since � e and � m are finite, ( � is typically

16, 32 or 64 bits), the set of numbers that is rep-
resented by a particular floating-point scheme is not
dense on the real line. Thus the set of possible floating-
point numbers, F , is given by

F : � % � � 1 � s & 0 # 5 �
�

m

∑
i ' 1

bi2 �)( i � 1 *,+ ! 2e :

s �.- 0 $ 1 /0$ bi �1- 0 $ 1 /0$ e ����2 e � e 3
465 - 0 / (2)

where e �7� , e �7� , e 8 e represent the lower and
upper limits of the exponent, and e � e � 2

�
e � 1. Note

that unlike fixed-point representation, underflow can
occur in floating-point arithmetic.

In the remainder of this paper, it is assumed that no
underflow or overflow occurs, that is � e unlimited, so
e ��� . Define the floating-point quantization operator,
q : �:9 F , as

q
�
x � : �<;==> ==?

sgn
�
x � 2 ( e � � m � 1 *0@ 2 ( � m � e � 1 *BA x A � 0

#
5 CD$

for x E� 0

0 $ for x � 0
(3)

where e �GF log2
A x A H � 1.

The quantization error, ε , is defined as

ε : � A x � q
�
x � A # (4)

It can be shown easily that the quantization error is
bounded by ε 8 A x A 2 �)( � m � 1 * # Thus, when a number
is implemented in finite-precision floating-point arith-
metic, it may be perturbed to

q
�
x �0� x

�
1 � δ ��$ A δ A 8 δmax

#
(5)

where δmax � 2 �)( � m � 1 * . Thus the perturbation is multi-
plicative, unlike the perturbation resulting using finite-
precision fixed-point arithmetic, which is additive.

3. EIGENVALUE SENSITIVITY

In general, the perturbations on the controller param-
eters resulting from finite-precision implementation
will be very small. Thus, perturbations on the closed-
loop system eigenvalues can be approximated by con-
sidering the first-order term of a Taylor expansion,
i.e., the eigenvalue sensitivities to changes in the con-
troller parameters. A number of different eigenvalue
sensitivity indices have bee proposed for fixed-point
digital controller and filter implementations (Mantey,
1968; Gevers and Li, 1993; Li, 1998; Istepanian et
al., 1998; Whidborne et al., 2001; Wu et al., 2001).

Assume that a controller/filter realization x � vec
�
X �

is implemented with floating-point arithmetic with fi-
nite precision, that is the actual realization will be
q
�
x � . Then, from (5), each element of x will be per-

turbed to xi

�
1 � δi � , II δi II 8 δmax � 2 �)( � m � 1 * , and the

realization vector will be perturbed to x � x � δ where
δ � � δi � .
Proposition 1. Let f

�
x �D�.J be a differentiable func-

tion of x ��� nx . Assume that x is perturbed to x̃ where
x̃i � xi

�
1 � δi � . Then, to a first-order Taylor series

approximationA f � x̃ � � f
�
x � ALK δmax

�
g
�M�

x
� �ONN O �

δ 2
max �)NN (6)

where II δi II 8 δmax for all i, O represents the second
and higher order terms of the Taylor series and g

�
x � is

the gradient vector, i.e.,



g
�
x � : � ∂ f

�
x �

∂x
��� ∂ f

∂xi � x
(7)

evaluated at x.

Proof: Taking a first-order Taylor series approxima-
tion:

f
�
x̃ � � f

�
x � �

n

∑
i ' 1 � ∂ f

∂xi � x

�
x̃i � xi � � O

�
δ 2

max � (8)

Now, from (5), x̃i � xi

�
1 � δi � , so

f
�
x̃ � � f

�
x �0� nx

∑
i ' 1

gi

�
x � xiδi � O

�
δ 2

max �
#

(9)

HenceA f � x̃ � � f
�
x � ALK nx

∑
i ' 1
II gi

�
x � II II xi II II δi II �ONN O �

δ 2
max �)NN

(10)8 δmax

nx

∑
i ' 1
II gi

�
x � II II xi II � NN O �

δ 2
max � NN

(11)

which, by the Cauchy-Schwartz inequality, givesA f � x̃ � � f
�
x � A 8 δmax

�
g
�
x � � � x � � NN O �

δ 2
max � NN # (12)���

If f
� 	 � is the system pole/eigenvalue, x is the infinite-

precision parameter vector and x̃ is the finite-precision
parameter vector, then Proposition 1 can be used to
measure the relative system stability when subject
to finite-precision implementation using floating-point
arithmetic. Based on Proposition 1, tractable eigen-
value sensitivity indices can be formulated which are
appropriate for finite-precision floating-point digital
controller and filter implementation.

4. OPTIMAL DIGITAL FILTER REALIZATIONS

Consider the problem of implementing a digital filter,
F

�
z ��� C f

�
zI � A f ��� 1B f � D f , where A f �6� n � n and

has no repeated eigenvalues, B f ��� n � q , C f ��� l � n

and D f �.� l � q . In this paper,
�
A f $ B f $ C f $ D f � is also

called a realization of F
�
z � . The realizations of F

�
z �

are not unique, if
�
A0

f $ B0
f $ C0

f $ D0
f � is a realization of

F
�
z � , then so is

�
T � 1A0

f T $ T � 1B0
f $ C0

f T $ D0
f � for any

non-singular similarity transformation T �6� n � n . The
system poles are simply the eigenvalues of A f . The
problem under consideration is to find the similarity
transformation such that the realization is has a min-
imal eigenvalue sensitivity when implemented using
finite word-length floating-point arithmetic.

Based on Proposition 1, the following tractable eigen-
value sensitivity index, Φ, is proposed

Φ � NNN A f
NNN 2F n

∑
k ' 1

wkΦk (13)

where wk is a non-negative real scalar weighting and

Φk � NNNNN ∂λk

∂A f

NNNNN
2

F

(14)

where - λi : i � 1 $ #
#
# $ n / represents the set of unique
eigenvalues of A f . The measure Φ is dependent upon

the filter realization, that is, given A f � T � 1A0
f T ,

Φ
�
T � : � NN T � 1A0

f T NN 2F n

∑
k ' 1

wkΦk

�
T � (15)

where, (Gevers and Li, 1993; Li, 1998),

Φk

�
T � � tr � RH

k T � T T � 1Rk 	 tr � LH
k T TT Lk 	 (16)

and where Rk and Lk are the right and left eigenvectors
respectively for the kth eigenvalue of A0

f .

Problem 1. Given an initial realization
�
A0

f , B0
f , C0

f ,

D0
f � , calculate

Φmin � min
T 
�� n  n
det ( T *��' 0

Φ
�
T � (17)

and calculate a subsequent similarity transformation
Tmin such that Φmin � Φ

�
Tmin � .

Theorem 1. The solution to Problem 1 is given by

Φmin � n

∑
k ' 1

II λk II 2 n

∑
k ' 1

wk (18)

and

Tmin ��� RWRH 	 1 � 2
V (19)

where R � � Ri � is the matrix of right eigenvectors of
A0

f , W � diag
�
w1 $ #
#
# $ wn � is a diagonal matrix of the

weights and V is an arbitrary orthogonal matrix.

Proof: From Lemma 6.2 and Theorem 6.1 of Gevers
and Li (1993, pp137-138), it follows that Φk � 1 with
equality for all k if A f is normal. From Horn and
Johnson (1985, p101),NNN A f

NNN 2F � n

∑
k ' 1

II λk II 2 (20)

with equality if A f is normal. Clearly, if A f is normal,
Φ is minimal and (18) holds. Theorem 6.2 of Gevers
and Li (1993, p141) gives (19).

���
Remark 1. The requirement for minimal eigenvalue
sensitivity for FWL fixed-point arithmetic is also that
the transition matrix A f is in the normal form (Gevers
and Li, 1993, p139).

5. OPTIMAL DIGITAL CONTROLLER
REALIZATIONS

Consider the linear discrete-time feedback control sys-
tem shown in Figure 2. Let the plant be P

�
z � , and let



P � z �

C � z � X �

���

� � �

��
�

� �

r y

w

plant

controller

Fig. 2. Feedback control system

the controller be C
�
z $ X � where X is the parameteriza-

tion of the controller.

Let
�
Ap $ Bp $ Cp $ 0 � be a state space description of the

strictly proper plant P
�
z � � Cp

�
zI � Ap ��� 1Bp, Ap �� m � m , Bp � � m � l and Cp ��� q � m . Let

�
Ac $ Bc $ Cc $ Dc �

be a state space description of C
�
z � � Cc

�
zI � Ac ��� 1Bc �

Dc, where Ac ��� n � n , Bc ��� n � q , Cc ��� l � n and Dc �� l � q .

The transition matrix of the closed loop system is

Ā ��� Ap � BpDcCp BpCc

BcCp Ac � $��� Ap 0
0 0 � ��� Bp 0

0 In � � Dc Cc

Bc Ac � � Cp 0
0 In � $� M0 � M1XM2 � Ā

�
X ��$ (21)

where

X : ��� Dc Bc

Cc Ac � $ (22)

In the sequel, it is assumed that Ā has no repeated
eigenvalues.

Let the realization
�
A0

c $ B0
c $ C0

c $ D0
c � of C

�
z � be repre-

sented by

X0 ��� D0
c C0

c

B0
c A0

c � $ (23)

then any realization is given by

X � � I 0
0 T � � 1 � D0

c C0
c

B0
c A0

c � � I 0
0 T � $ (24)� T � 1

I X0TI $ (25)

where T ��� n � n is non-singular.

Let Rk � �
RT

k

�
1 � RT

k

�
2 � � T and Lk ��

LT
k

�
1 � LT

k

�
2 � � T be the right and left eigenvectors

respectively for the kth eigenvalue of Ā partitioned
such that Rk

�
1 ��$ Lk

�
1 � �7J m and Rk

�
2 ��$ Lk

�
2 � �7J n ,

i.e., the partitions correspond to the partitions
of X defined by (22). Then, it can be shown
(Li, 1998; Whidborne et al., 2001) that

� ∂λk

∂Ac � T � Rk

�
2 � LH

k
�
2 ��$ (26)

� ∂λk

∂Bc � T � CpRk

�
1 � LH

k
�
2 ��$ (27)

� ∂λk

∂Cc � T � Rk

�
2 � LH

k
�
1 � Bp $ (28)

� ∂λk

∂Dc � T � CpRk

�
1 � LH

k
�
1 � Bp $ (29)

where - λk : k � 1 $ #
#
# $ n � m / represents the set of
unique eigenvalues of Ā.

Based on Proposition 1, the following tractable eigen-
value sensitivity index, ϒ, is proposed

ϒ
�
X � : � � X � 2F n � m

∑
k ' 1

wkϒk (30)

where wk is a non-negative real scalar weighting and

ϒk � NNNN ∂λk

∂Ac

NNNN 2F � NNNN ∂λk

∂Bc

NNNN 2F
� NNNN ∂λk

∂Cc

NNNN 2F � NNNN ∂λk

∂Dc

NNNN 2F # (31)

The measure ϒ is dependent upon the controller real-
ization. Given an initial realization

�
A0

f , B0
f , C0

f , D0
f � ,

then it can be easily shown that�
X
� 2

F � tr
�
P � 1A0

cPA0T
c � � tr

�
P � 1B0

cB0T
c �

� tr
�
PC0T

c C0
c � � tr

�
D0

cD0T
c ��$ (32)

where P � TT T and, from (26) – (29), that

ϒk � tr
�
R0H

k
�
2 � P � 1R0

k
�
2 � � tr

�
L0H

k
�
2 � PL0

k
�
2 � �

� αk tr
�
L0H

k
�
2 � PL0

k
�
2 � �

� βk tr
�
R0H

k

�
2 � P � 1R0

k

�
2 � � � αkβk $ (33)

where

αk � tr
�
R0H

k
�
1 � CH

p CpR0
k
�
1 � ��$ (34)

βk � tr
�
L0H

k
�
1 � BpBH

p L0
k
�
1 � � # (35)

Rearranging gives

ϒ
�
P � ��� tr � P � 1A0

cPA0T
c � � tr

�
P � 1B0

cB0T
c �

� tr
�
PC0T

c C0
c � � tr

�
D0

cD0T
c � 	! � n � m

∑
k ' 1

tr
�
P � 1MRk

� tr
�
PMLk

�

� tr
�
PWL � � tr

�
P � 1WR � � c 	 (36)

where

MRk
� w1 � 2

k
R0

k
�
2 � R0H

k
�
2 � (37)

MLk
� w1 � 2

k
L0

k
�
2 � L0H

k
�
2 � (38)

WL � L0 � 2 � diag
�
w1α1 $ #
#
# $ wn � mαn � m � L0H

�
2 ��$
(39)

WR � R0 � 2 � diag
�
w1β1 $ #
#
# $ wn � mβn � m � R0H

�
2 ��$

(40)



are all Hermitian, and

c � n � m

∑
k ' 1

αkβk

#
(41)

Problem 2. Given an initial realization
�
A0

c , B0
c , C0

c ,
D0

c � , calculate

ϒmin � min
P 
�� n  n

P ' PT � 0

ϒ
�
P � (42)

where P � T TT , and calculate a subsequent similarity
transformation Tmin such that ϒmin � ϒ

�
TminT T

min � .

Theorem 2. A necessary condition for the solution of
Problem 2 is given by� n � m

∑
k ' 1

tr
�
P � 1MRk

� tr
�
PMLk

�

� tr
�
PWL � � tr

�
P � 1WR � � c 	! � A0

cP � 1A0T
c � C0T

c C0
c 	

� � tr � P � 1A0
cPA0T

c � � tr
�
P � 1B0

cB0T
c �

� tr
�
PC0T

c C0
c � � tr

�
D0

cD0T
c � 	! � n � m

∑
k ' 1

tr
�
P � 1MRk

� MLk
� WL 	

� P � 1 & � n � m

∑
k ' 1

tr
�
P � 1MRk

� tr
�
PMLk

�

� tr
�
PWL � � tr

�
P � 1WR � � c 	! � A0

cPA0T
c � B0

cB0T
c 	

� � tr � P � 1A0
cPA0T

c � � tr
�
P � 1B0

cB0T
c �

� tr
�
PC0T

c C0
c � � tr

�
D0

cD0T
c � 	! � n � m

∑
k ' 1

tr
�
PMLk

� MRk
� WR 	 + P � 1 # (43)

Proof: Differentiating ϒ with respect to P gives

∂ϒ
∂P
��� n � m

∑
k ' 1

tr
�
P � 1MRk

� tr
�
PMLk

�

� tr
�
PWL � � tr

�
P � 1WR � � c 	! � A0

cP � 1A0T
c � P � 1A0

cPA0T
c P � 1

� P � 1B0
cB0T

c P � 1 � C0T
c C0

c 	
� � tr � P � 1A0

cPA0T
c � � tr

�
P � 1B0

cB0T
c �

� tr
�
PC0T

c C0
c � � tr

�
D0

cD0T
c � 	! � n � m

∑
k ' 1

tr
�
P � 1MRk

� MT
Lk

� tr
�
PMLk

� P � 1MT
Rk

P � 1

� WT
L � P � 1WT

R P � 1 	 # (44)

Any solution P of (42) must necessarily satisfy ∂ ϒ
∂ P �

0, so (43) is obtained.

���

There does not appear to be an analytic solution to
(43), hence nonlinear programming is used to find a
solution to Problem 2. From the optimal Pmin, a cor-
responding optimal transformation matrix Tmin where
Pmin � TminT T

min can be constructed as (Li et al., 1992)
Tmin � P1 � 2

min
V for any orthogonal matrix V .

6. EXAMPLE

The following numerical example is taken from Gev-
ers and Li (1993, pp236-237). The discrete time sys-
tem to be controlled is given by

Ap � ���
�
3
#
7156 � 5

#
4143 3

#
6525 � 0

#
9642

1
#
000 0 0 0
0 1

#
000 0 0

0 0 1
#
000 0

� ��
� $ (45)

Bp � � 1 0 0 0 � T $ (46)

Cp � � 0 # 1116 0
#
0043 0

#
1088 0

#
0014 � ! 10 � 5 # (47)

A pole-placement controller is designed to place the
closed-loop poles at

0
#
9844 � 0

#
0357 j $ 0 # 9643 � 0

#
0145 j $ (48)

and a state observer is designed with poles located at

0
#
7152 � 0

#
6348 j $ 0 # 3522 � 0

#
2857 j

#
(49)

The initial realization of the feedback controller C
�
z �

is given by (to 4 decimal places)

A0
c � Ap � BpC0

c � BpC
0
c

� ���
�

2
#
6743 � 5

#
7443 2

#
5096 � 0

#
9176

0
#
2877 � 0

#
0273 � 0

#
6947 � 0

#
0088

� 0
#
3377 0

#
9871 � 0

#
3294 � 0

#
0042

� 0
#
0830 � 0

#
0032 0

#
9190 � 0

#
0010

� ��
� $

B0
c � � 1 # 0963 0

#
6385 0

#
3027 0

#
0744� T ! 106 $

C0
c �G� 0 # 1818 � 0

#
2831 0

#
0500 0

#
0617 � $

D0
c � 0

#
The weights are set to wi � �

1 � λmax ��� � 1 �7II λi II � where
λmax � maxi - II λi II / . The initial realization has an open-
loop pole sensitivity, Φ � 1

#
5737 ! 106. From Theo-

rem 1, the optimal open-loop pole sensitivity Φmin �
6
#
1746, which can be achieved with the realization (to

4 decimal places):

Ac � ���
�
0
#
6194 � 0

#
1992 � 0

#
0835 � 0

#
1265

0
#
1346 0

#
6052 � 0

#
2297 0

#
0171

0
#
0508 0

#
1650 0

#
5315 � 0

#
2813

0
#
2047 0

#
0653 0

#
2218 0

#
5605

� ��
� $

Bc � � 0 # 6508 0
#
0048 2

#
0020 0

#
2961 � T ! 106 $

Cc � � 0 # 11000
#
0222 � 0

#
0142 � 0

#
0168� #

The closed-loop pole sensitivity for the initial realiza-
tion is ϒ � 2

#
3396 ! 1010 and for the open-loop opti-

mal realization is ϒ � 2
#
1720 ! 109. Using the MAT-

LAB routine balreal.m, a balanced realization was
obtained (to 4 decimal places):



Ac � ���
�

0
#
1119 0

#
5408 � 0

#
1954 � 0

#
0531

� 0
#
5408 0

#
7216 0

#
1647 0

#
0350

� 0
#
1954 � 0

#
1647 0

#
7643 � 0

#
1298

0
#
0531 0

#
0350 0

#
1298 0

#
7189

� ��
� $

Bc � � 203
#
1819 � 63

#
5703 32

#
0424 � 4

#
1143� T $

Cc � � 203
#
1819 63

#
5703 32

#
0424 4

#
1143 � #

The closed-loop pole sensitivity for the balanced real-
ization is ϒ � 1

#
3528 ! 106.

The MATLAB routine fminsearch.m was used to
solve Problem 2. An optimal closed-loop pole sensi-
tivity value of ϒmin � 5

#
3002 ! 103 was obtained with

a realization (to 4 decimal places):

Ac � ���
�

0
#
6841 � 0

#
0813 2

#
4433 � 0

#
8279

0
#
5783 0

#
9234 � 1

#
7750 2

#
7260

� 0
#
0096 0

#
0006 � 0

#
2040 � 0

#
1434

0
#
0765 � 0

#
0035 3

#
0433 0

#
9131

� ��
� $

Bc � � 113
#
9572 � 50

#
4959 � 64

#
7777 160

#
9055� T $

Cc � � 36
#
9396 � 0

#
9027 � 134

#
6869 157

#
0591� #

7. DISCUSSION AND CONCLUSIONS

In previous works, the eigenvalue sensitivity approach
to obtaining optimal digital filter and controller real-
izations so as to account for the finite precision inher-
ent in digital computing devices has been thoroughly
investigated. However, there has been an assumption
that the parameter uncertainty is additive. This assump-
tion is perfectly valid for filter and controller imple-
mentations that use fixed-point arithmetic, however,
it is shown in this paper that for floating-point arith-
metic, the parameter uncertainty is multiplicative. It is
becoming increasingly common to use floating-point
arithmetic for digital filters and controllers. Thus, in
this paper, the work of Gevers and Li (1993) is ex-
tended to obtain optimal floating-point digital filter re-
alizations; and the work of Whidborne et al. (2001) is
extended to obtain optimal floating-point digital con-
troller realizations.

The methods are demonstrated on a numerical exam-
ple. It is shown that the optimal open-loop and the
balanced realization result in high closed-loop pole
sensitivities. The closed-loop pole sensitivity of the
balanced controller realization is reduced by three or-
ders of magnitude using the proposed method.
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