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Abstract: Applications of bifurcation control to chemical engineering processes have aimed at
rendering subcritical bifurcations supercritical. Beyond affecting the criticality of bifurcation
points for control purposes, it is possible todeliberately introducebifurcation points to
stabilize parts of the equilibrium manifold of an ODE process model. This can be done
without affecting the equilibrium manifold of the uncontrolled process. For brevity this
approach is calledbifurcation placement. The present paper focuses on the introduction
of Hopf bifurcations, though the approach is more general. Conditions are stated for the
introduction of a Hopf bifurcation at a given location on the equilibrium manifold of a system
of ODEs. The proof is constructive in the sense that it allows to calculate the controller needed
for the introduction of the desired bifurcation point. A simple motivating example and an
application to a model of an industrial continuous polymerization process are presented.
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1. INTRODUCTION

Abed and Fu were among the first to discuss how
to modify the stability properties of bifurcated solu-
tions from a control point of view. They presented
results for Hopf and stationary bifurcations (Abed and
Fu, 1986; Abed and Fu, 1987). Abed and coworkers
suggested the use of dynamic feedback and washout
filters which allow to change stability properties of
bifurcated solutions without affecting the equilibrium
manifold (Abedet al., 1996). Jørgensen and cowork-
ers (Reckeet al., 2000) applied these ideas to models
of industrial chemical engineering processes to render
subcritical Hopf bifurcations supercritical.

To the authors’ knowledge, results from bifurcation
control theory have so far only been employed to ren-
der sharp bifurcations soft in engineering processes.
This work goes a step further by showing that Hopf
bifurcation points can beintroduced on purposeto
stabilize parts of the equilibrium manifold. The intro-
duction of Hopf bifurcation points may at first sight
seem counterintuitive, since Hopf bifurcations are ac-
companied by limit cycles and an exchange of stability
between equilibria and limit cycles. These limit cycles

and their effects are generally not acclaimed in chem-
ical engineering processes. However, an exchange of
stability need not necessarily imply that steady states
of interestlosestability to limit cycles, but one may
sometimes look at the same phenomenon as unstable
steady statesgaining stability due to an exchange of
stability from a limit cycle. In this yet preliminary
sense, the exchange of stability need not necessarily be
a drawback, but it may be exploited for a stabilization
of steady states. It is stressed that Hopf bifurcations
arenot introduced in order to run the process on a limit
cycle afterwards, but in order to change the stability
properties of steady states. Hopf bifurcations and the
accompanying limit cycles are introduced as they have
a desired effect on these steady states.

The paper is organized as follows. In Section 2, a
motivating example for the deliberate introduction
of a Hopf bifurcation is presented. Section 3 states
the main theorem, the proof of which is deferred to
the Appendix. In Section 4 the approach is applied
to an industrial continuous polymerization process
example. Section 5 discusses the results and gives a
brief outlook.
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2. MOTIVATING EXAMPLE

In this section the idea of bifurcation placement is
applied to a one dimensional dynamical system with
hysteresis. In this example a branch of steady state
solutions, which is unstable without the proposed con-
troller, is rendered stable.

The example considered is

ẋ=�x3+2x+u: (1)

A brief analytical analysis or a simple continuation
bifurcation analysis reveals that the inner branch is
unstable while the outer branches are stable. Figure 1a
shows the bifurcation diagram in the bifurcation pa-
rameteru.

The dynamic variablez is introduced, and the model
is augmented by the scalar dynamic equation

ż= x�dz: (2)

Further feedback is introduced by setting

u= v+wy; y= x�d z: (3)

This yields

ẋ=�x3+2x+v+wy; (4)

ż= x�dz;

y= x�d z

where the controller parameters are set to

w=�2:36; d =�0:56:

The values ofw andd have been chosen to introduce
a Hopf bifurcation point atv= 0:5 using the approach
to be presented.

The bifurcation diagram of the controlled process (4)
is shown in Figure 1b. The controlled model now
has unstable outer branches of equilibria, while the
formerly unstable steady states on the middle branch
are stable forv2 (0:5;1:1). Note that equilibria in the
rangev2 (�1:1;�0:5) have also been stabilized. It is
stressed that formerly unstable steady states have been
stabilized without affecting the form, size, shape, etc.
of the manifold of steady state solutions.

A two-parameter continuation of the Hopf bifurca-
tions in the parametersv and d, cf. Fig. 2b, reveals
that values ofd exist for which the Hopf bifurcations
disappear in the bifurcation diagram. Figure 2a shows
such a bifurcation diagram in which no Hopf bifurca-
tions exist on the stable branch. Thus, the proposed
approach allows us to go from the bifurcation diagram
in Fig. 1a to the bifurcation diagram in Fig. 2a. Note,
however, that this paper only discusses the introduc-
tion of Hopf bifurcations. The concurrent disappear-
ing of Hopf bifurcations on the inner branch after a

–2

–1

0

1

2

x

–1 0 1 2–2
�

stable
unstable

(a)

–1.5

–1

–0.5

0

0.5

1

1.5

2

–1.5 –1 –0.5 0 0.5 1 1.5

x

unstable
stable

v

(b)

Fig. 1. (a) Bifurcation diagram of the uncontrolled
system (1), (b) bifurcation diagram of the con-
trolled system (4). The filled boxes represent the
extrema of stable limit cycles after projection to
the (x;v)-plane. The filled circles mark saddle-
node bifurcations.

variation of controller parameters is the result of an
analysis.

3. BIFURCATION PLACEMENT

3.1 Notation

Consider the ODE system

ẋ= f (x;u); (5)

where x 2 R
n, u 2 R

m, and f : Rn � R
m ! R

n is
assumed to be sufficiently smooth.

The system of equations

ẋ= f (x;u) (6)

ż= xk�dz;

where

y= xk�dz; (7)

y;d;z2 R, for somek2 f1; :::;ng is referred to as the
augmented system.

Choosingu to be a function ofy as defined in equa-
tion (7),u=U(y) with

U(y) = v+wy+h.o.t:; (8)
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Fig. 2. (a) Bifurcation diagram for the augmented
model whered was set tod = �0:3. (b) Two-
parameter continuation of Hopf bifurcations. The
dashed horizontal lines mark the values ofd used
in the bifurcation diagrams Fig. 1a (d = �0:56)
and Fig. 2a(d =�0:3).

the augmented system has an equilibrium solution

(x;u;z) = (x0;U(y);xk0=d) (9)

if and only if the system of ODEs (5) has an equilib-
rium solution

(x;u) = (x0;v): (10)

This can be shown directly by settingy = 0. Note
that this relation between open loop and closed loop
equilibria persists if higher order terms in (8) are
allowed for.

Assume that (5) has an equilibrium at(x;u) = (0;0).
Linearizing system (5) at this equilibrium yields

ẋ= A(0;0)x+B(0;0)u+h.o.t. (11)

with A2 Rn�n, B2 Rn�m,

Aµν(x;u) =
∂ fµ

∂xν
(x;u); (12)

Bµν(x;u) =
∂ fµ

∂uν
(x;u): (13)

3.2 Objective

Loosely speaking, we intent to stabilize a branch of
steady state solutions which is unstable due to a sin-
gle eigenvalueλn in the right half complex plane.
Branches of this type arise, for example, when the pro-
cess model undergoes a saddle-node bifurcation while
the input or bifurcation parameteru is varied. Given
an unstable steady state on this branch, an additional
dynamic degree of freedom is introduced, resulting in
an additional eigenvalue. This eigenvalue is intention-
ally placed in the openright half of the complex plane.
In the next step this eigenvalue is forced to become
the complex conjugate ofλn (rendering the previously
realλn complex). Finally, the complex conjugate pair
is forced to cross over to the open left half complex
plane by varying the controller parametersd and w
in equations (6)-(8) appropriately, resulting in a Hopf
bifurcation of the augmented system. Since the other
stable eigenvalues are not affected, this will stabilize
the formerly unstable steady state. By continuity, the
steady states in some neighborhood of the discussed
equilibrium will be stable as well.

3.3 Theorem: Controller for single unstable mode

Assume that at the equilibrium(x;u) = (0;0), matrix
A from (12) has eigenvaluesλ1; :::;λn, where

Re(λi)< 0; i = 1; :::;n�1; (14)

whereas for the remaining eigenvalue

λn 2 R; λn > 0 (15)

holds. Furthermore, letvn denote the vector that spans
the eigenspace which corresponds toλn.

Let k be an arbitrary but fixed value 1� k� n. If the
vectors∇ fk andvn are not normal, i.e.

vT
n ∇ fk 6= 0; (16)

and if further

vn 2 range(B); (17)

whereB is defined as in (13), thenw2 Rn andd 2 R
in the augmented system can be chosen such that the
linearization of the augmented system and (8) has the
eigenvalues

λ1; :::;λn�1 (18)

of the system (5), and arbitrary eigenvalues

λ̃n; λ̃n+1 (19)

either real andλn 6= λ̃n+ λ̃n+1, or complex conjugate
and not zero.



The proof is deferred to the Appendix. The proof is
constructive, i.e.,d in the augmented model andw in
the feedback (8) can be determined. In particular,λ̃n

andλ̃n+1 can be chosen to have negative real parts to
result in a (locally exponentially) stable equilibrium of
the augmented system, whereas system (5) is unstable
at the corresponding equilibrium. Similarly,λ̃n and
λ̃n+1 can be chosen to be complex conjugate with real
part zero. Note that this is necessary but not sufficient
for a Hopf bifurcation to exist at the equilibrium of
interest.

4. APPLICATION TO POLYMERIZATION
PROCESS

Process models for continuous homopolymerization
have been presented, analyzed and discussed in a
series of papers by Ray and coworkers, see Ray
and Villa (2000) and references therein. The process
treated here is the solution free radical homopolymer-
ization of vinyl acetate, which has been analyzed thor-
oughly with respect to its nonlinear dynamic behavior
by Teymour and Ray (1992b). The model consists
of four ODEsk = 1; :::;4 for the monomer, solvent
and initiator concentration and the temperatureT, and
18 algebraic equations which describe reaction rates,
densities, heat capacities and the gel effect. The resi-
dence timeθ , initiator concentration, feed temperature
and cooling temperature are considered to be manipu-
lated inputs. For details on the process model refer to
Teymour and Ray (1992a; 1992b). A good summary
of the model can be found in DeCicco (2000).

A typical bifurcation diagram of the process is shown
in Fig. 3a. The diagram shows that between about
T =60oC andT =100oC, no stable steady states exist,
since the middle branch is unstable and the upper
branch loses stability due to a Hopf bifurcation in this
temperature range.

A Hopf bifurcation is introduced on the middle branch
of steady states in Fig. 3 at a residence time ofθ = 40
min. Applying the proposed approach yields

w= (�21:13;0:02197;1:373;�24:31)T; (20)

d =�0:4205: (21)

for k = 4. The bifurcation diagram for the controlled
model is shown in Figure (3b).

As in the illustrative example in Sect. 2, the stabi-
lization of equilibria on the inner branch can only
be achieved at the cost of destabilizing the outer
branches. This will in general be the case, since
saddle-node bifurcations link a stable and an unstable
branch of solutions in the bifurcation diagram.

The result is analyzed further by a two-parameter
Hopf continuation in the bifurcation parameterv and
the controller parameterd. The result of the two-
parameter continuation is shown in Fig. 4b. The figure
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Fig. 3. Bifurcation diagram of the polymerization pro-
cess, (a) uncontrolled process, (b) controlled pro-
cess. The filled circles mark saddle-node bifurca-
tions. The filled squares represent the amplitudes
of the stable oscillations arising from the two
limiting Hopf bifurcation points.

implies that there are values of the controller parame-
terd for which the Hopf bifurcations disappear on the
inner branch. Such a bifurcation diagram is shown in
Fig. 4a. Note that similar to the motivating example,
the proposed approach allowed us to turn open-loop
unstable branches into closed-loop stable branches of
equilibria, cf. Figs. 3a and 4a.

In summary, the inner branch of steady state solu-
tions of the process was stabilized. In particular this
introduces stable equilibria into a range of residence
times versus temperature in which no stable points of
continuous operation exist for the open-loop process.

5. DISCUSSION

The present paper followed Abedet al. (1996) in
introducing the augmented equation and feedback of
the type (2), (3) in order to retain the equilibrium
manifold of the open-loop process. This is crucial to
our approach, since it allows to, roughly speaking,
decouple equilibria location and stability boundary
location. Abed (1995) discusses the relocation of Hopf
bifurcation for extending stability margins in a thought
experiment. The present work goes a step further by
introducing Hopf bifurcations deliberately, in order to
exploit the exchange of stability which accompanies
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Fig. 4. (a) Bifurcation diagrams of the controlled
polymerization process ford = �0:15, (b) re-
sult of the two-parameter continuation of Hopf
points. The upper dashed line marksd =�0:15,
the lower dashed line corresponds tod = �0:42
which is the value at which the bifurcation dia-
gram 3b was obtained.

the Hopf bifurcation for rendering previously unstable
equilibria stable.

Future work must aim at extending theorem 3.3 with
respect to several aspects. Most importantly, the re-
strictive condition (17) has to be weakened and its
relation to the controllability condition rank[B AB � � �
An�1B

�
= n has to be investigated. Secondly, eigen-

valuesλ1; :::;λn�1 need not remain at their open-loop
locations in the complex plane, but it is sufficient to
restrict them to the left half complex plane or to bound
their real and imaginary parts to obtain the desired
dynamic behavior of the process to first order. In this
context, the relation of the approach presented to pole
placement, eigenstructure assignment and bifurcation
point relocation by static state feedback has to be dis-
cussed. Thirdly, it remains to be investigated whether
theorem 3.3 can be extended to allow for a treatment
of equilibria which are unstable due to more than one
eigenvalue in the open right half of the complex plane.

It is stressed that the introduction of a complex con-
jugate pair of eigenvalues on the imaginary axis is
only necessary for a Hopf bifurcation to occur. While
this necessary condition can be fulfilled using linear
feedback (3), third order terms in the feedback law can
determine whether the Hopf bifurcation is sub- or su-
percritical (Abed and Fu, 1986). The introduction of a

Hopf bifurcation as suggested here, and the control of
its criticality type can therefore be done subsequently
and independently. The influence of the second order
of the feedback law on the nondegeneracy of the Hopf
bifurcation remains to be investigated. Furthermore, it
remains to be studied whether conditions for the intro-
duction of a degenerate Hopf bifurcation related to the
maxima ind in Figs. 2b and 4b can be stated. For the
examples shown, this would have allowed to directly
design the controller to turn diagram 1a into 2a, and 3a
into 4b.

6. APPENDIX: PROOF OF 3.3

Change of coordinates of augmented system.Differen-
tiatingy= xk�dzand using ˙z= y, ẋk = fk(x;u) yields
ẏ= fk(x;u)�dy. System (6) can therefore be rewritten
as

ẋ= f (x;u) (22)

ẏ= fk(x;u)�dy: (23)

The Jacobian of this system is

Ã=

�
A b

Ak� bk�d

�
(24)

whereAi j =
∂ fi
∂xj

, A 2 Rn�n, b = Bw2 Rn, bk is the

kth element ofb, andAk� denotes thekth row of A.
After substitution ofu=U(y), U(y) = v+wy+h.o.t.,
cf. (8), the linearization of system (6) in(x;z) is

Â :=

�
A+ B̂ �db

eT
k �d

�
; (25)

where B̂ hasb = Bw on its kth column and entries
zero otherwise. Matrix (25) is similar to (24) with the
transformation matrix

R(k) :=

�
I (n) 0n

eT
k �d

�
: (26)

Characteristic Polynomial of (25).Let V 2 R
n�n,

rankV = n, be the transformation that yields the upper
Jordan normal form

V�1AV = Λ =

0
B@

B1
...

Br

1
CA ; (27)

whereBi , i = 1; :::; r � n are Jordan block matrices and
the last block matrix isBr = λn 2 R. Setting

Ṽ :=

�
V 0n

0T
n 1

�
(28)

implies thatṼ has full rank, furthermore

Ṽ�1ÃṼ =

�
Λ b?

a?T bk�d

�
=: Λ̃; (29)



with b? = V�1b2 Rn, a?T = Ak�V 2 R1�n. Choosing
b?=(0; :::;0;b?n)

T with b?n 6= 0, the characteristic poly-
nomialPc of Ã as defined in (24) can be determined by
expanding det(Λ̃�λ I (n+1)) along its last column,

Pc = det(Λ̃�λ I (n+1)) (30)

=
�
(bk�d�λ )(λ �λn)�b?na

?

n

�n�1

∏
i=1

(λi �λ ) :

Eigenvalues of (25).Comparing coefficients of the
first factor of (30) and

Q :=
�

λ̃n�λ
��

λ̃n�1�λ
�

(31)

and substitutingbk = b?nVkn yields the linear equations

�
Vknλn�a?n �λn

�Vkn 1

��
b?n
d

�
= (32) 

λ̃nλ̃n+1

λn�
�

λ̃n+ λ̃n+1

�! :

Since the determinant of the matrix on the l.h.s. of (32)
equals�a?n = �Ak�vn and since further by require-
ments oñλn, λ̃n+1 the r.h.s. of (32) is not equal to 0,b?n
andd can be chosen such thatP andQ have the same
rootsλ̃n andλ̃n+1 if and only if

Ak�vn 6= 0 (33)

which is the non-normality condition (16).

Eigenvalues of (24).In summary, the characteristic
polynomial Pc from (30) has the roots (18), (19).
ThereforeΛ̃ has the eigenvalues (18), (19). SinceÃ, Λ̃
and the linearization of (6), equation (25), are similar,
they have the desired eigenvalues (18), (19).

Note thatb?n and d can be determined from linear
system (32),b can then be determined by transforming
it according tob = Vb?, b? = (0; :::;0;b?n)

T . Further-
moreb = Vb?, b? = (0; :::;0;b?n)

T implies b = b?nvn,
and sincevn 2 range(B), w can be determined from
b= Bw.
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