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Abstract: This paper studies in detail a method for rotor-resistance adaptation for
indirect-field orientated control of induction generators based on the reactive-power
reference model. First of all, it will be shown how the adaptation procedure can
be made independent of stator frequency and load torque. Secondly, the stability
of the adaptation procedure will be demonstrated rigorously by means of Lyapunov
theorem. Simulation results using data from two different machines will be presented
to validate the main contributions. Finally, the sensitivity of the algorithm to errors
in other machine parameters will be investigated.
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1. INTRODUCTION

Field-orientated control of induction motors has
made it possible to extend the use of induction
machines in high performance applications.

Direct-field-orientated control (DFOC) includes
a closed-loop rotor-flux controller and requires
the calculation of rotor-flux modulus and po-
sition. This is the standard solution for high-
performance drives but requires complicated al-
gorithms. Indirect-field-orientated control (IFOC)
does not have a closed-loop rotor-flux controller
and only requires the angular position of the
rotor-flux vector which is calculated integrating
the vector angular speed (Murphy and Turnbull,
1988). This can be computed using the rotor speed
and the stator-current measurement. IFOC is a
very simple and, therefore worth-to-be-considered
solution in many applications. However, the cal-
culation of the angular speed of the rotor flux is

very sensitive to errors in rotor resistance which
changes widely with temperature.

Several algorithms to estimate the rotor resistance
have been presented in the literature. Those based
on Model Reference Adaptive Systems (MRAS)
are particularly well suited for IFOC systems
(Rowan et al., 1991). Typically:

a) Torque Reference Model. The torque refer-
ence model uses the torque equation to adapt
the rotor resistance (Lorenz and Lawson,
1990). The adaptation can be utilised even
during transient torque conditions. However,
there is the need to know the stator resistance
(variable with temperature) and L2

M/LR,
where LM and LR are the magnetizing induc-
tance and the rotor inductance, respectively.
Although the implementation of this method
is analysed in (Lorenz and Lawson, 1990), the
convergence is not studied in detail.
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b) Reactive-Power Reference Model. The react-
ive-power reference model uses the reactive-
power equation to estimate the rotor resis-
tance (Garcés, 1980). This method uses the
stator inductance, LS , and σ (σ = 1 −
L2

M/LSLR), but there is no need to know
the stator resistance. A thorough analysis of
the convergence of the resistance estimate to
its actual value shows a strong dependency
on the operating point (supply frequency and
machine torque). This issue needs to be fur-
ther investigated.

c) D-Axis and Q-Axis Voltage Reference Models
(Rowan et al., 1991). These methods use the
d-axis voltage equation and the q-axis voltage
equation respectively to estimate the rotor
resistance. Both approaches use stator resis-
tance, stator inductance and σ. The errors
between the estimated variable and the real
value obtained with the reference model are
analysed in steady-state in (Rowan et al.,
1991). These errors drive the adaptation pro-
cess. It is demonstrated that the load torque
and the supply frequency also affect the al-
gorithms convergence in this case.

The scheme proposed in this paper estimates the
rotor resistance using a reactive-power-based ref-
erence model derived from (Garćıa-Cerrada and
Robertson, 1999). Unlike in previous references,
the algorithm convergence is rigorously stud-
ied here. Furthermore, previos references study
this type of algorithm only in motoring appli-
cations while induction machines are already a
very-competive alternative for generation in wind
farms. Therefore, this paper also addresses the
algorithm in generation mode. The reactive-power
model is introduced in Section 2. An adaptation
algorithm to estimate the rotor resistance, based
on reactive-power model is introduced in Section
3, both in motor mode and generator mode. The
algorithm has been made independent of the ma-
chine supply frequency, the initial guess for the ro-
tor resistance value and the machine torque. The
stability of this algorithm is analysed in Section 4.
The main results are tested in Section 5 through
simulation of two different induction machines
working in generator and motor mode. Finally,
the sensitivity of the proposed algorithm to er-
rors in motor inductances is investigated through
simulation.

2. REACTIVE-POWER REFERENCE MODEL

The state-variable model of an asynchronous mo-
tor referred to a reference frame rotating with an
arbitrary angular speed can be written as (Vas,
1990),
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where iSd, iSq, ψRd, ψRq, vSd and vSq are the d
and q components of stator currents (iS), rotor
flux (ψR) and stator voltage (vS). ωe is the angular
speed of the reference frame used to model the
machine. ωR is the rotor speed in electric rad/s.
Te is the electro-mechanical torque. TL is the load
torque. P is the number of pole pairs. J is the total
motor and load inertia. B is the total damping
coefficient. RS is the stator resistance and RR is
the rotor resistance.

This state-variable model can be written using a
reference frame which moves at the same angular
speed that the rotor-flux vector. Moreover, the
d axis of this frame can always be taken in the
direction of the rotor flux vector (ψRq = 0).
This is the field-orientated reference frame. If the
stator-current components (d and q) in this frame
are controlled and the rotor-flux modulus is kept
constant: iSd is equal to i∗Sd, iSq is equal to i∗Sq and
the rotor-flux modulus becomes LM i∗Sd in steady-
state. Note that i∗Sd and i∗Sq stand for the reference
values of stator currents. If stator-current refer-
ences are made constant, stator equations lead to:

LSσ
di∗Sd

dt
=−RSi∗Sd + LSσω̂Si∗Sq + vSd = 0 (4)

LSσ
di∗Sq

dt
=− LSω̂Si∗Sd −RSi∗Sq + vSq = 0 (5)

where ω̂S is the estimated value for the angular
speed of the rotor flux in steady state.

Equations (4) and (5) may be used to calculate
ω̂S eliminating Rs, giving:

ω̂S =
vSqi

∗
Sd − vSdi

∗
Sq

LS

(
i∗2Sd + σi∗2Sq

) =
Q

LS

(
i∗2Sd + σi∗2Sq

) (6)



where Q is the instantaneous reactive power of
the machine. It is worth pointing out that (6)
only contains machine parameters which do not
undergo significant changes (LS and σ) during
operation. This is a clear advantage.

The angular speed estimated in this way, ω̂S ,
is equal to the angular speed of the rotor-flux
vector only when the reference frame rotates syn-
chronously with the rotor-flux vector and ψRq = 0
during steady-state operation.

In an induction motor with IFOC, the angular
speed of the stator-current vector is forced to be:

ωe = ωR +
R̂R

LR

i∗Sq

i∗Sd

(7)

where R̂R stands for the estimated value of the
rotor resistance and all d and q components are
referred to the field-orientated frame.

Obviously, this is also the angular speed of the
rotor-flux vector in steady-state. In addition, the
angular position of the rotor-flux vector can be
calculated as

θe =
∫

ωedt (8)

Under stator-current control conditions, correct
field-orientation using an IFOC is only achieved
if R̂R = RR (Sugimoto, 1983). Therefore, (6)
and (7) will give the same result only in this
circumstance. The difference between those values
can be used to drive the adaptation process.

3. ROTOR-RESISTANCE-ADAPTATION
ALGORITHM

The machine-control system (IFOC) is depicted
in figure 1 whereas the calculus of the angular
position θe is depicted in figure 2. The estimated
angular speed, ω̂S , is compared with the speed of
reference frame, ωe, to form an error, e. This error
is then used by the rotor-resistance-adaptation
algorithm to adjust the rotor resistance estimate,
R̂R, used to calculate the speed of the reference
frame (see equation (7)) and the angular position
(see (equation 8)).
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The error between the estimated angular speed of
the rotor flux, ω̂S and the angular speed of the
reference frame used in the IFOC, ωe is given by:

e = ω̂S − ωe (9)

If vSd and vSq are calculated from (1) and they
are taken to (6), one obtains in steady-state:

ω̂S = ωe
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2
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2
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2
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Substituting (10) in (9), the error equation yields

e = α
ωe

(
R2

R − R̂2
R

)

R2
Ri∗2Sd + R̂2

Ri∗2Sq

; α =
(1− σ)i∗

2

Sdi
∗2
Sq

i∗2Sd + σi∗2Sq

(11)

When the induction machine operates in motor
mode, the angular rotor speed, ωR and the q
component of the stator current, i∗Sq are positive
or negative simultaneously. Therefore the error
will be zero only when R̂R is equal to RR. But
when the induction machine operates in generator
mode, the angular rotor speed and the q com-
ponent of the stator current have opposite signs,
therefore the error will be zero when R̂R is equal
to RR or when ωe = 0 (see equation (7)).

A rotor resistance update algorithm can be chosen
as in (Garćıa-Cerrada and Robertson, 1999)

dR̂R

dt
= γi∗Sqe (12)

where γ is a positive constant that affects the
convergence rate of the controller. This is a design
parameter and can be changed during operation
to keep γi∗Sq constant in (12) so that the motor
torque current does not affect the convergence
dynamics. For practical reasons γ cannot be made
arbitrarily big and the algorithm does not work
when i∗Sq is very small. Substituting (11) in (12)
yields,

dR̂R

dt
= γα

ωei
∗
Sq

(
R2

R − R̂2
R

)

R2
Ri∗2Sd + R̂2

Ri∗2Sq

(13)

During motor-mode operation, this algorithm al-
ways converges to the real value of the rotor re-
sistance because ωe · i∗Sq > 0. However, during



generator-mode operation, if ωe · i∗Sq < 0, R̂R

increases when R̂R > RR and decreases when
R̂R < RR. Therefore the actual value of the rotor
resistance will never be reached. It is clearly shown
that in motor mode the convergence rate is a
function on the angular speed of the reference
frame, ωe. It is also shown that the adaptation
process might be affected by the torque reference
current (i∗Sq).

The algorithm proposed in this paper is applicable
in motor and generator modes. Up to certain
extend, its convergence rate can be kept constant
regardless of ωe and i∗Sq. If

dR̂R

dt
=

γ

ωe
e (14)

substituting (11) in (14) yields

dR̂R

dt
= γα

(
R2

R − R̂2
R

)

R2
Ri∗2Sd + R̂2

Ri∗2Sq

(15)

Section 4 demonstrates that this algorithm esti-
mates the rotor resistance correctly for any oper-
ation mode. However, it does not work when the
angular speed of the reference frame is equal to
zero in steady-state: Fortunatelly, the induction
machine never operates in these conditions. The
algorithm is also badly conditioned if i∗Sq is very
small because α tends to zero and the inital esti-
mate for the rotor resistance does not change.

4. ADAPTATION ALGORITHM STABILITY

The differential equation (15) is clearly nonlinear
dynamical system. Lyapunov theorem for global
stability is used to demonstrate its stability (Slo-
tine and Li, 1991).

The rotor-resistance-estimation error can be de-
fined as, h

h = RR − R̂R (16)

If RR is constant during the adaptation process,
its time derivative yields

dh

dt
= −dR̂R

dt
(17)

Substituting (15) and (16) into (17) yields

dh

dt
= −γα

(
RR + R̂R

)
h

R2
Ri∗2Sd + R̂2

Ri∗2Sq

(18)

The following Lyapunov function candidate can
be proposed

V = h2 (19)
which is positive definite and V (h) → ∞ when
‖h‖ → ∞.

Its time derivative is:

dV
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=

dV
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Therefore

dV

dt
= −2γα

(
RR + R̂R

)

R2
Ri∗2Sd + R̂2

Ri∗2Sq

V (21)

Thus, V̇ < 0 as long as h 6= 0, so that h = 0
(R̂R = RR) is a globally aymptotically stable
equilibrium point.

5. SIMULATION RESULTS

The simulation results have been obtained using
two different induction motor, whose parameters
are given in Appendix A (250 W) and in Ap-
pendix B (3 kW), to compare the adaptation
dynamics. Both machines use an IFOC for rotor-
speed control. Rotor resistances in the machine
simulator have been made 50% bigger than their
nominal values which have been used as the initial
estimates. Adaptation algorithm begins to update
the rotor resistance at 5 s.

Figure 3 shows the simulation results of the 250
W induction machine working in generator mode
with a load torque TL = −1, 5 N·m (85% of
nominal torque) and with changes in rotor speed
reference. The adaptation algorithm updates the
rotor resistance to the correct value. Once the
rotor resistance is correct, the speed transients
improve substantially.

Figure 4 shows the simulation results of the 250 W
induction machine working in motor mode with a
load torque TL = +1, 5 N·m and with changes in
rotor speed reference. The adaptation algorithm
also updates the rotor resistance to the correct
value.

Figure 5 shows the simulation results of the 250
W induction machine working in generator mode
at low rotor speed (about 50 rad/s) with a load
torque TL = −1, 5 N·m. The adaptation algorithm
updates the rotor resistance to the correct value
again and the convergence rate is similar to that
on Figure 3 where the motor speed was much
higher.

The same simulation experiments have been car-
ried out with a larger-size machine.

Figure 6 shows the simulation results of the 3
kW induction machine working in generator mode
with a load torque TL = −15 N·m (75% of
nominal torque) and with changes in rotor speed
reference. Figure 7 shows the simulation results
of the 3 kW induction machine working in motor
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Fig. 3. Adaptation algorithm response in genera-
tor mode (250 W motor)
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Fig. 4. Adaptation algorithm response in motor
mode (250 W motor)

mode with a load torque TL = +15 N·m and
with changes in rotor speed reference. Figure 8
shows the simulation results of the 3 kW induction
machine working in generator mode at low rotor
speed (about 50 rad/s) with a load torque TL =
−5 N·m (25% of nominal torque). The adaptation
algorithm updates the rotor resistance to the
correct value again.

In all six cases treated the adaptation dynamics
are very similar.

5.1 Sensivity of the Proposed Algorithm

One of the disadvantages of the reactive-power
reference model is the sensivity to detuning in the
stator and rotor inductances.
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Fig. 5. Adaptation algorithm response in genera-
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Fig. 6. Adaptation algorithm response in genera-
tor mode (3 kW motor)

Simulations have been carried out to analyse this
sensivity. The machine power is 250 W, the load
torque is TL = −1, 5 N·m and the rotor speed
is ωR = 300 rad/s. Inductances have been varied
±4% with respect to their nominal values. The
results obtained are showed in Table 1 and in
Table 2. In all cases, the errors produced in the
current-stator components are higher when the
rotor resistance is not estimated.

∆% εRR
% εiSd

% εiSq
% εTe%

∆LR = +4% 6, 12 8, 20 1, 93 10, 38

∆LR = −4% 2, 89 4, 85 2, 06 6, 78

∆LS = +4% 17, 10 13, 65 2, 95 10, 30

∆LS = −4% 11, 11 8, 00 3, 50 4, 78

Table 1. Errors produced by inductance
detuning. The error of the variable x is

εx = |(xreal − xmeasured) /xreal|
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Fig. 7. Adaptation algorithm response in motor
mode (3 kW motor)
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Fig. 8. Adaptation algorithm response in genera-
tor mode at low speed rotor (3 kW motor)

∆% εRR
% εiSd

% εiSq
% εTe%

∆LR = +4% 50 21, 03 13, 85 6, 46

∆LR = −4% 50 23, 40 19, 68 11, 98

∆LS = +4% 50 22, 26 16, 62 9, 35

∆LS = −4% 50 22, 26 16, 62 9, 35

Table 2. Errors produced by inductance
detuning without adaptation algorithm

6. CONCLUSIONS

An adaptation algorithm to estimate the rotor
resistance based on a reference model is studied
in this paper (MRAS). This algorithm is used in
a IFOC scheme, which is a simple and valuable
solutions in many applications. The adaptation
algotithm works properly in motor and generator
modes. Previously-presented studies would only
consider motoring operation mode. The algorithm
stability has been demonstrated rigorously by
means of Lyapunov theorem. The proposed adap-
tation algorithm is globally aymptotically stable.

Up to certain extend the convergence speed can
be made independent of the supply frequency and
the motor torque current.

Finally, a simulator has been developed to validate
the main results. Important errors are produced
when the rotor resistance is not estimated, there-
fore, this algorithm improves the IFOC scheme.
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Appendix A. 250 W INDUCTION MACHINE
PARAMETERS

RS = 48Ω RR = 24, 6Ω
LS = 1, 1338 H LR = 1, 1338 H
LM = 1, 0282 H P = 2
J = 1, 1 · 10−3 kg·m2 B = 1, 6 · 10−3 kg·m2·s−1

Appendix B. 3 KW INDUCTION MACHINE
PARAMETERS

RS = 2, 5Ω RR = 1, 5Ω
LS = 0, 33 H LR = 0, 33 H
LM = 0, 32 H P = 2
J = 25 · 10−3 kg·m2 B = 5, 6 · 10−3 kg·m2·s−1


