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Abstract: Motivated by the objective to further reduce the storage and computation time 
required by finite-horizon discrete-time optimal reduced-order LQG compensators, this 
paper introduces the modified reachability canonical form of a minimal finite-horizon 
discrete-time compensator and an algorithm to compute it. Next recursive algorithms for 
efficient storage and recovery of the compensator matrices in the modified reachability 
canonical form are presented. Finally the modified reachability grammian, which is 
associated to the modified reachability canonical form, is used to show and explain why 
in the finite-horizon case, if the initial compensator state is non-zero, minimality in 
general does not imply reachability of the compensator. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
Minimality of compensators plays a crucial role in 
solving optimal reduced-order LQG problems (Van 
Willigenburg and De Koning, 1999, 2000, 2002). One 
of the reasons is that given a certain input-output 
behavior of the compensator, due to the desire to 
reduce the compensator dimensions, minimal 
compensators are the interesting ones. In the finite-
horizon case this forced us to investigate the 
minimality property of finite-horizon compensators 
(Van Willigenburg and De Koning, 2002). 
 
It turned out that it is not straightforward to adapt 
minimality and the related properties reachability and 
observability (Kalman et al., 1969; Kwakernaak and 
Sivan, 1972; Kailath 1980) to compensators which 
are only defined over a finite horizon. For a non-zero 
initial compensator state, to define minimality, the 
reachability grammian must be modified. As 

demonstrated in this paper, due to this modification, 
minimality no longer implies reachability of the 
compensator. Minimal discrete-time compensators 
have time-varying dimensions. These are caused by 
boundary conditions and possibly also by the time-
varying dimension of the discrete-time system 
involved in the LQG problem. The latter occurs in 
digital LQG problems if the sampling is performed 
asynchronously (Van Willigenburg and De Koning, 
2001) 
 
Given a finite-horizon discrete-time optimal reduced-
order LQG compensator, computed from one of the 
algorithms in Van Willigenburg and De Koning 
(1999), the use of canonical representations  may be 
exploited to further reduce the computation time and 
storage needed by this minimal compensator. 
Therefore in this paper we introduce a modified 
reachability canonical form which is associated to the 
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modified reachability grammian. Then, based on the 
modified reachability canonical form, recursive 
algorithms to efficiently store and recover the 
compensator matrices, forward in time, are presented. 
Our compensators and their notation comply with the 
ones in Van Willigenburg and De Koning (1999, 
2002) 
 

2. MINIMALITY, REACHABILITY AND 
OBSERVABILITY 

 
Consider the following deterministic time-varying 
compensator defined over a finite horizon, 

 1
ˆ ˆ ˆ, ,

c

in

i i i i i ix F x K y x R+ = + ∈

 , 0,1, .., 1il

i
y R i N∈ = −   (1) 

where ,c

i i
n l  denote respectively the dimension of the 

compensator state $xi and the compensator input 

vector (system output vector) yi  at time i . Denote 

this compensator by ( )0
ˆ , ,N Nx F K  where 

{ }0 1 1
, , ..,N

N
F F F F −= , { }0 1 1

, , ..,N

N
K K K K −= .  

 
For the compensator (1) we have, 

 
1

,0 0 , 1

0

ˆ ˆ , 1, 2,..,
i

i i i k k k

k

x F x F K y i N
−

+

=

= + =∑ , (2) 

where, 

 , 1 2 .. ,l m l l mF F F F l m− −= > , , ,c

l
l m n

F I l m= = . (3) 

Definition 1  

( )0, ,N NF K  is called reachable if for ˆ
c

inx R∀ ∈ , 

1, 2, ..,i N∀ = , { }0 1, .., iy y −∃  such that ˆ ˆ
ix x=  can be 

reached. •  
 
Consider the following deterministic time-varying 
compensator defined over a finite horizon.  

 1
ˆ ˆ ˆ,

c

in

i i i ix F x x R+ = ∈ , 

 ˆ , , 0,1, .., 1im

i i i i
u L x u R i N= ∈ = − . (4) 

where im  denotes the dimension of the compensator 

ouput vector  (system input vector) ui  at time i . 

Denote this compensator by ( ),N NF L  where 

{ }0 1 1
, , ..,N

N
L L L L −= . 
 
Definition 2  

( ),N NF L  is called observable if for 

0,1, .., 1i N∀ = − , 1 10, 0, .., 0i i Nu u u+ −= = =  

implies ˆ 0ix = . •  
 
Consider the compensator 

1
ˆ ˆ ˆ, ,

c

i in l

i i i i i i ix F x K y x R y R+ = + ∈ ∈  

 ˆ , , 0,1, .., 1im

i i i i
u L x u R i N= ∈ = −  (5) 

Denote this compensator by ( )0
ˆ , , ,N N Nx F K L  •  

A non-zero initial condition 0x̂  and the boundary 

condition ˆ
Nx  complicate the definition of a 

minimality property over a finite horizon.  From 
equation (5) observe that ˆ

Nx  does not influence the 
input-output behavior of the compensator 

( )0
ˆ , , ,N N Nx F K L  so its minimal dimension 0c

N
n = . 

Since 0x̂  is deterministic, at time 0i =  a basis 
transformation exists such that at most one 
compensator state variable of the transformed 0x̂  is 

unequal to zero. Therefore 
0

1cn =  is the minimal 

dimension of 0x̂  that preserves the input-output 
behavior. 
 
Definition 3 

( )0, , ,N N NF K L  is called minimal if ( )0, ,N NF K  is 

reachable and ( ),N NF L  is observable and if in 

addition 
0

1cn =  and 0c

N
n = . •  

 
The following analysis explains why definition 3 
must be generalised for compensators with 0

ˆ 0x ≠ . 

Consider the sets { }ˆ ˆ ˆr r

i i ix x x=  of states that can be 

reached by the compensator ( )0
ˆ , ,N Nx F K  at each 

time 1, 2, ..,i N=  using 0 1 1, , .., iy y y − . These sets are 
determined by equation (2). The first term on the right 
in equation (2) is a constant term while the second 
term, through the variation of 0 1 1, , .., iy y y −  either 
represents the full compensator state-space at time i , 

i.e. 
c

inR , or it represents a hyperplane with dimension 
cr c

i i
n n<  inside the state-space 

c

inR . In the latter case, 
since the hyperplane represented by the second term 
contains the origin, a basis transformation exists such 

that cr

i
n  unit vectors of the new basis span this 

hyperplane. If the first term is part of this hyperplane, 
which always is the case if 0

ˆ 0x = , then it does not 
change the hyperplane. If not, the first term shifts the 
hyperplane away from the origin. Then, to represent 

the hyperplane, one additional unit vector  i.e. 1cr

i
n +  

state variables are needed. 
 

Let 0,

c c

i in n

iW R ×∈  denote the reachability grammian of 

the compensator ( )0, ,N NF K  associated to the state 

transition 0
ˆ 0x =  to ˆ ˆ

ix x= , [ ]1,i N∈ , i.e., 

 
1

0, , 1 , 1

0

, 1, 2, ..,
i

T T

i i k k k i k

k

W F K K F i N
−

+ +

=

= =∑ . (6) 

Based on equation (2) define the modified 
reachability grammian,  



     

1

0, ,0 0 0 ,0 , 1 , 1

0

ˆ ˆ
i

T T T

i i i i k k k i k

k

TW F x x F F K K F
−

+ +

=

′ = + ∑ , 

1, 2, ..,i N= .  (7) 

This grammian is associated with the compensator 
state transition from 0x̂  to ˆ ˆ

ix x= , [ ]1,i N∈ . Dual to 
the reachability grammian (6) consider the 

observability grammian 
c c

i in nN

iM R ×∈  given by, 
1

, , ,
, 0,1, .., 1

N
T T

i N k i k k k i

k i

M F L L F i N
−

=

= = −∑ . (8) 
 
Then from definitions 1-3 and equations (2), (6), (7), 
(8) the following two lemmas are immediate. 
 
Lemma 1 

( )0, ,N NF K  reachable 0,iW⇔  full rank [ ]1,i N∀ ∈ . 

Dually ( ),N NF L  observable ,i NM⇔  full rank 

[ ]0, 1i N∀ ∈ −  •  
 
Lemma 2 
1) The first term on the right in equation (2) lies 

inside the hyperplane with dimension cr c

i i
n n<  

determined by the second term on the right in 

equation (2) ( )0,

cr c

i i i
rank W n n′⇒ = < , [ ]1,i N∈ . 

2) The first term on the right in equation (2) lies 

outside the hyperplane with dimension cr c

i i
n n<  

determined by the second term on the right in 

equation (2) ( )0,
1cr c

i i i
rank W n n′⇒ = + ≤ , 

[ ]1,i N∈ . 
3) The second term on the right in equation (2) spans 

the full state-space 
c

inR  ( )0,

c

i i
rank W n′⇒ = ,  

 [ ]1,i N∈ . •  
 
From lemma 2 and the analysis below definition 3 

( )0,irank W ′  represents precisely the minimum 
number of compensator state variables needed to 
describe the reachable space at time [ ]1,i N∈ . 
 
Definition 4 

( )0
ˆ , , ,N N Nx F K L  is called minimal if 

[0, 1]i N∀ ∈ − , ,i NM  full rank and if [1, ]i N∀ ∈ , 

0,iW ′  full rank and if in addition 1c

o
n =  and 0c

N
n = •  

 
It is well known that the reachability and 
observability grammian (6), (8) can be given in 
recursive form as follows, 

0, 1 0,
, 0,1,.., 1,T T

i i i i i i
W FW F K K i N+ = + = −  

0 0

0,0 0
c c

n nW R ×= ∈  (9) 

, 1,
, 0,1,.., 1,T T

i N i i N i i i
M F M F L L i N+= + = −  

, 0
c c

N Nn n

N NM R ×= ∈ . (10) 

Similar to (9)  the recursive form of (7) is given by, 

0, 1 0,
, 0,1,.., 1,T T

i i i i i i
W FW F K K i N+

′ ′= + = −   

0 0

0,0 0 0
ˆ ˆ

c c
n nTW x x R ×′ = ∈ . (11) 

Equations (9) and (11) are identical except for the 

initial value which from 0  is changed into 
0 0

ˆ ˆ Tx x . This 
constitutes the generalization. Introduce, 

( ) ( )( )0, ,
min ,c

i i i N
r rank W rank M′= , 

0,1, ..,i N= .  (12) 

Then from equations (10), (11), (12), 

0 0
ˆ 0 1cx r≠ ⇒ = , 

0 0
ˆ 0 0cx r= ⇒ = , 0c

N
r = ,(13.1) 

[ ]1
, 0, 1c c c

i i i i i
r m r r l i N+− ≤ ≤ + ∈ − . (13.2) 

From equation (13) and definition 4 the dimensions of 
a minimal compensator satisfy, 

c c

i i
n r= , 1, 2, .., 1i N= − , 

0
1cn = , 0c

N
n = . (14) 

On the other hand if ( )0
ˆ , , ,N N Nx F K L  has 

dimensions c

i
n  satisfying (14) then one can always 

choose the compensator such that it is minimal. 
 
Lemma 3 

For the compensator ( )0
ˆ , , ,N N Nx F K L  let 

k k N, 0 ≤ ≤  denote the first time instant for which 

( ) ( )0, 0,k krank W rank W′ =  holds. 

Then ( ) ( )0, 0, ,i irank W rank W k i N′ = ≤ ≤  •  
 
Proof 
Follows directly from equations (9) and (11) •  
 
Before time k  there is a significant difference 
between the reachability grammian 0,iW  and the 

modified reachability grammian 0,iW ′ . At and after 

time k  there is no significant difference.  
 
Theorem 1 
For a finite-horizon compensator minimality only 
implies reachability if 0

ˆ 0x =  or 1k =  in lemma 3 •   
 
Proof 
From definitions 3, 4 and the analysis after definition 
3 minimality implies reachability only if 0

ˆ 0x =  or 

0 1k k= ∨ =  in lemma 3. But 0
ˆ0 0k x= ⇔ =  •  

 
Remark 1 
Equation (13.2) and (14) imply that the change of the 
dimension of the state of a minimal compensator, 
from one discrete time instant to the next, is bounded 
from above and below by respectively the number of 
outputs and inputs of the compensator. Equation (13) 
and (14) imply that, at the initial and final time, the 
dimension of the compensator state of a minimal 
compensator drops in one or several time steps to one 
and zero respectively •  



     

3. RECURSIVE COMPUTATION OF THE 
MODIFIED REACHABILITY CANONICAL 

FORM 
 
Since the compensator matrices of finite horizon 
optimal full and reduced-order LQG compensators 
are time-varying, to store them a serious amount of 
computer memory is required. Therefore saving 
storage may be especially important. In the infinite 
horizon case the reachability and observability 
canonical forms of a minimal compensator, in 
general, require less storage than other 
representations of minimal compensators. Therefore 
an interesting issue is the computation of similar 
canonical forms of minimal finite-horizon 
compensator. Due to the time-varying dimensions of 
a finite-horizon compensator, and due to the 
modification of the reachability grammian, needed to 
establish minimality, this issue is not straightforward. 
 
In this section, the so called scheme II, presented by 
Kailath (1980, page 427) which computes the 
reachability canonical form for minimal linear time-
invariant systems (compensators) defined over an 
infinite horizon is modified to apply to finite-horizon 
time-varying discrete-time compensators with time-
varying dimensions. The canonical form that results 
will be called the modified reachability canonical 
form for reasons to be explained. 
 
Consider basis transformations of the compensator 
state-space, 

$ $′ = −x P xi i i

1 , i N= 0,1, .. , , (15) 

where $ , , .. ,′ =x i Ni 0,1  represents the compensator 

state in the new basis. P i Ni , , .. ,= 0,1  are square 

matrices of dimension ni

c  the columns of which 
contain the basis vectors of the new basis at each time 
i N= 0,1, .. ,  (Kailath 1980, page 334). Denote the 

ni

c  columns of Pi  by p k ni

k

i

c, , .. ,= 1 . The 
compensator matrices represented in the new basis 
are, 

1

1

1
0 0 0ˆ ˆ , , ,

i i i i i i i
x P x F P F P L L P−

+

−′ ′ ′= = =  

′ = =+

−K P K i Ni i i1

1 0,1, , .. ,  (16) 

Note that since the final compensator state has 
dimension zero PN  is irrelevant. Consider the 
following recursive algorithm that determines the 
matrices P i Ni , , .. ,= −0,1 1 . 
 
Algorithm 1 
1) Initialisation :   i R x: : $= =0, 0 0  
2) While i N≤ − 1  

 search Ri  for ni

c  independent columns 

, 1, ..,j c

i i
p j n=  

3) 1 2: ..
c

i

c c
i in

i i i i

n nP p p p R ×= ∈    

4) [ ] ( )1

1 :
c c
i i i

i i i i

n n l
R K F P R +

+

× +
= ∈  

5) i i:= + 1  •  

 
Theorem 2 
When algorithm 1 is applied to a minimal 

compensator $ , , ,x F K LN N N

0b g  step 3 of algorithm 1 

produces matrices P i Ni , , .. ,= −0,1 1  that transform 

this compensator into $ , , ,′ ′ ′ ′x F K LN N N

0b g  as 

determined by equation (16). The latter compensator 
is represented in a canonical form that we will call the 
modified reachability canonical form •  
 
Proof 
From Kailath (1980, page 334) the jth column of 

′= +

−F P F Pi i i i1

1  may be interpreted as the coefficients of 

the representation of the column vector F pi i

j  in the 

basis 
1 1
, 1, ..,k c

i i
p k n+ += . Similarly the jth column of 

′ = +

−K P Ki i i1

1  may be interpreted as the coefficients of 

the representation of the jth column of Ki  in the basis 

p k ni

k

i

c

+ +=1 11, , .. , .  By selecting p k ni

k

i

c

+ +=1 11, , .. ,  

partly equal to the columns of Ki  and the column 

vectors , 1, ..,j c

i i i
F p j n= , as algorithm 1 does, the 

associated columns of ′ ′K Fi i,  will be standard basis 
vectors (unit column vectors) and thus result in a 
canonical form. Observe that these results apply 
regardless of whether the dimension of the 

compensator state and input, i.e. n li

c

i, , vary with the 
discrete time i . Due to the minimality of the 
compensator ′ >W i0 0, . Then from equation (11) and 

the recursive definition of iR  in algorithm 1 observe 

that there always are precisely ni

c  independent 

columns present in Ri . Finally observe that if $x0 0=  
algorithm 1 generates the reachability canonical form. 
From theorem 1 a non-zero initial condition may 
destroy reachability and consequently we refer to our 
canonical form as the modified reachability canonical 
form.  •  
 
Remark 2 
The observability canonical form is dual to the 
reachability canonical form. Thus the algorithm to 
obtain the observability canonical form is the dual of 
our algorithm 1 when we set $x0 0=  •  
 
Remark 3 
Although the usual terminology is to speak of the 
(modified) reachability and observability canonical 
form these forms are by no means unique (Kailath 
1980). Firstly they depend on the order in which Ri  is 
searched for independent columns. Secondly they 
depend on the order in which the independent 
columns are put into Pi . It would therefore be better 
to speak of a reachability and observability canonical 
form. Although they are not unique the computer 
storage they all require (save) is roughly the same •  
 
 



     

Theorem 3 

Let 
1 1

, 1, ..,k c

i i i
r k n l− −= +  denote the columns of Ri . 

Assume that step 3 of algorithm 1 searches the 
columns of Ri  from left to right. Also assume that the 
order in which the independent columns 

, 1, ..,j c

i i
p j n=  are found is identical to the order in 

which they are put into Pi . Then the modified 
reachability canonical form generated by  algorithm 1 
can be represented as follows, 

0 0
ˆ ˆ0 1x x′ ′= ∨ = , 

 [ ] 1 2 ..
c

i il n

i i i i iK F v v v +′ ′ =    , 0,1, .., 1i N= −  (17) 
 
If j k

i i
p r=  i.e. the kth column of Ri  is the jth 

independent column found in Ri  then k

i
v  is a 

standard basis vector (unit column vector) with 1 

appearing at the kth position. If not then k

i
v  is a 

column vector of which only the first n elements may 
be unequal to zero where n is the number of 
independent columns found so far •  
 
Proof 
Follows from the first part of the proof of theorem 2
 •  
 

4. ALGORITHMS FOR EFFICIENT STORAGE 
AND RECOVERY 

 
Algorithms that exploit the modified reachability 
canonical structure to reduce, as much as possible, the 
computer memory needed for storage of the 
compensator, are presented in this section. 
 
From the last part of theorem 3 note that, to recover 
the modified reachability canonical form from only 
the possibly non-zero and non-one elements of the 
compensator matrices, during the search for 
independent columns it is important to store the 
indices of these independent columns. Alternatively 
one might store the indices of the dependent columns. 
Due to the minimality of the compensator there are at 

each time 1, .., 1i N= −  precisely c

i
n  independent 

and 
1 1

c c

i i i
n l n− − −+ dependent columns in iR  . Since 

usually the dimension of consecutive states are equal 
and larger then the number of compensator inputs the 
latter are fewer numbers. Denote these numbers by 

1 1
, 1, ..,j c c

i i i i
q j n l n− −= + − . 
 
Algorithm 2 

Encode a compensator $ , , ,′ ′ ′ ′x F K LN N N

0b g , obtained 

from algorithm 1 and theorem 3, into the following 
array of numbers: 
 
 

0 0 0 1 1 0
ˆ, , , , , ,,cN x m l n Q C′  

 1 1 2 2 1, , , , ,cm l n Q C  
 ….. 

 
2 2 1 1 2
, , , , ,c

N N N N N
m l n Q C− − − − −  

 1 1,N Nm C− −  
 

where 1 11 2, , .., , 1, 2,.., 1
c c

i i in l n

i i i iQ q q q i N− −+ −= = − . 

Furthermore , 0,1, .., 1iC i N= −  are arrays of 
numbers containing the possibly non-zero elements of 
the columns of the compensator matrices at time i  
that are not standard basis vectors (unit column 
vectors). These arrays are generated recursively as 
follows : 
 
 ( ):i iC L′= , 1n =  

 for 2, 3, .., c

i i
k n l= +  

  if { }1 1, 1, ..,j c c

i i i ik q j n l n+ +∈ = + −  then 

  ( ): 1 :k

i i iC C v n=     

  else 1n n= +  
 
Here ( ):iL′  denotes an array of numbers containing 
the elements of the column vector which stacks all the 
columns of the compensator matrix iL′ . Furthermore 

( )1 :k

i
v n  denotes an array of numbers equal to the 

first n  elements of the column vector k

i
v  as defined 

by theorem 3 in the previous section. 
 
Theorem 4 
By working the array of numbers  generated by 
algorithm 2 from left to right the compensator 

matrices of ( )0
ˆ , , ,N N Nx F K L′ ′ ′ ′  can be recovered, 

forward in time. •  
 
Proof / Algorithm 3 

Note that since the compensator is minimal 
0

1cn =  
and therefore need not be present in the array. Then 
the first number in the array equals N  and the second 

the scalar 1 1

0
x̂ R ×′ ∈ . From the next three numbers 

0 0 1
, , cm l n  in the array  the dimensions of 

1 0 1 0 0 0

0 0 0, ,
c c c c

n n n l m nF R K R L R× × ×′ ′ ′∈ ∈ ∈  follow. Next from 

the array we obtain  0 0 11 2

1 1 1 1, , ..,
c cn l nQ q q q −+=  and ( )0 :L′ , 

the stacked columns of 0L′ , that appear first in 0C , as 
can be seen from algorithm 2. From theorem 3 the 

indices 0 0 11 2

1 1 1 1, , ..,
c cn l nQ q q q −+=  determine respectively 

which columns of [ ]0 0K F′ ′  are not standard basis 
vectors and also the number of possibly non-zero 
elements of these columns. These possibly non-zero 
elements are all stacked in 0C  after ( )0 :L′ , as can be 

seen from algorithm 2. As a result from 1Q , 0C  we 

can recover the matrices 0 0 0, ,F K L′ ′ ′  using the known 

structure of [ ]0 0K F′ ′  mentioned in theorem 3. 

Similar arguments apply to 
1 1

, , , ,c

i i i i i
m l n Q C+ +  from 

which , ,i i iF K L′ ′ ′ , 1, 2, .., 2i N= −  can be recovered. 



     

Note that since the compensator is minimal 0c

N
n = . 

Due to this 1 1,N NF K− −
′ ′  are empty and from 

( )1 1 1, :N N Nm C L− − −
′=  we recover 1NL −

′  •  

 
Example 1: Encoding of a minimal compensator in 

the modified reachability canonical 
form 

4, 1, 3, 3, 2,0, 2, 2, 2, 2, 0,c

i i
N n l= = =  

2, 2, 2, 2, 0, 0,1,..,im i N= =  

0 0 0 0

0 1 0
2

1, 0 , 0 1 ,
3

1 0 0

x F K L′ ′ ′ ′= = = =

   
    
            

 

1 1 1

1 0 6 1 0
7 8 9

2 0 0 , 0 1 ,
6 5 3

0 1 5 0 0

F K L′ ′ ′= = =

   
    
            

, 

2 2

2 3 5 1 0
,

1 4 3 0 1
F K′ ′= =

− −

   
      

, 

2

7 6 5

3 1 2
L

−
′ =

−

 
  

, 

[ ] [ ]3 3 3

2 4
, ,

3 6
F K L

−
′ ′ ′= = =

−

 
  

 

 
The associated array generated by algorithm 2 : 
 

 0 0 0 1

1 0

ˆ4, 1 2, 2, 2,

[], [2, 3]

, cN x m l n

Q C

′= = = = =

= =
 

 1 1 2

2 1

2, 2, 3,

[3, 5], [7, 6, 8, 5, 9, 3, 1, 2, 6, 0, 5],

cm l n

Q C

= = =

= =
 

 2 2 3 3

2

2 2, 2, [3, 4, 5],

[7, 3, -6, -1, 5, 2, 2, -1, 3, 4, 5, -3],

, cm l n Q

C

= = = =

=
 

 3 32, [2, 3, -4 , -6]m C= =  •  

 
Theorem 5 
Compared to ordinary storage of a minimal 
compensator (i.e. storing all the dimensions and all 
the elements of the compensator matrices) algorithm 
2 reduces the number of numbers needed for storage 
by at least  

( )
1

1 1

1

N
c c c c

i i i i i

i

n n n l n
−

− −

=

− + −∑  •  

 
Proof 
Ordinary storage, excluding , , , 0,1,..,c

i i i
n l m i N=  

requires the storage of  

( )
1

0 1 1

10 0 1 1
ˆ,

, ,

2
N

c c

i i i i

i i i i
N x L F K L

m n n l m
−

− −
= − −

′ ′ ′ ′ ′

+ + ++ ∑  

numbers. The storage required by algorithm 2 is the 
largest if the non-standard basis vectors in equation 

(17) are the last columns of [ ]i iK F′ ′ . Excluding 

, , , 0,1,..,c

i i i
n l m i N= , in this case  

( ) ( )
1

0 1 1 1 1

10 0 1 1
ˆ,

, ,

2
N

c c c c c

i i i i i i i i

i i i i i
N x L F K L Q

m n n l n m n l n
−

− − − −
= − −

′ ′ ′ ′ ′

+ + + − + + + −∑
 numbers are needed for storage •  

 
 

5. CONCLUSIONS 
 
Having computed a finite-horizon discrete-time  
optimal reduced-order LQG compensator, with one 
of the algorithms presented by Van Willigenburg 
and De Koning (1999), the results of this paper 
enable further reduction of the storage and 
computation time required by this minimal 
compensator. Especially when the dimensions of the 
compensator state are high, from theorem 5, the 
modified reachability canonical form and the 
associated algorithms 1-3 for efficient storage and 
recovery, developed in this paper, significantly 
reduce the computer memory needed for storage. 
Besides having time-varying dimensions theorem 1 
revealed that minimal finite-horizon discrete-time 
compensators are usually not reachable if the initial 
compensator state is non-zero. 
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