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Abstract: This paper discusses the matching conditions as introduced in two recently
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method. The integrability of the latter method is studied in general.
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1. INTRODUCTION

In a number of recent papers a new method has
been introduced for stabilizing underactuated me-
chanical systems. The key idea of the method
is to look for a stabilizing feedback law which
renders the closed loop system into another me-
chanical system, that is, which preserves the phys-
ical structure of the system. Such a method is
obviously desirable since physical motivations and
knowledge can be used to design the feedback law
according to the desired properties of the closed
loop system. Since the mechanical systems under
consideration are underactuated, stabilizing a de-
sired equilibrium point of the system cannot be
done by shaping of the potential energy only (as
in the case for fully actuated systems). In general
one also needs to adjust the kinetic energy of
the system, leading to a closed loop mechanical
system with a modified total energy.

The method has been developed using the Euler-
Lagrange formalism in (Bloch et al., 1997; Bloch
et al., 1998; Bloch et al., 1999; Bloch et al., 2000),

see also (Auckly et al., 2000; Auckly and Kapitan-
ski, 2000; Hamberg, 1999; Hamberg, 2000), and
was called the controlled Lagrangians method. The
existence of a structure preserving feedback law is
determined by the so-called matching conditions.
These matching conditions constitute a set of par-
tial differential equations (PDEs), which have to
be solved for the closed loop systems’ modified
total energy function (under the constraint of sta-
bilizing the original underactuated system). If a
stabilizing total energy function which solves the
PDEs is found, then the corresponding feedback
law can be immediately obtained as a result from
these data.

Indepently, the analogy of the method using the
port-controlled Hamiltonian formalism has been
developed in (Ortega et al., 2001a; Ortega et
al., 2001b; Ortega et al., 2001¢; Goémez-Estern
et al., 2001), and was called the interconnection
and damping assignment passivity based control
method (IDA-PBC). The existence of a structure
preserving feedback law is again described by a
set of PDEs. However, since the class of port-



controlled Hamiltonian systems is strictly larger
than class of Euler-Lagrange systems, more free-
dom is obtained in finding solutions of these
PDEs. In fact, next to modifying the total energy
function of the system, also the internal intercon-
nection structure (corresponding to the Poisson
bracket of the system) is allowed to be changed.

In this paper, we describe and compare the match-
ing conditions of both methods. It is shown that
for a particular choice of the internal interconnec-
tion structure the IDA-PBC method effectively re-
sults in the controlled Lagrangians method. This
leads to the study of integrable Hamiltonian sys-
tems (i.e. transformable to EL systems) which can
result from the IDA-PBC method. It is shown
that the ‘integrable’ IDA-PBC method allows to
introduce gyroscopic terms in the closed loop sys-
tem. Finally, some remarks are given on how to
translate and extend certain interesting results on
the controlled Lagrangians side (in particular the
so-called A-method of (Auckly et al., 2000)) into
the IDA-PBC method. More details on the results
of this paper can be found in (Blankenstein et
al., 2001).

2. MATCHING OF EULER-LAGRANGE
SYSTEMS

Consider a forced Euler-Lagrange system with n-
dimensional configuration space Q, described by
a Lagrangian L : TQ — R,

4 9La.d) - VoLla.d) = Gl (1)

(VgL stands for the partial derivative of L(g, ¢)
with respect to ¢, etc.). The matrix G(q) : R™ —
T;Q ~ R", with rank G = m, defines the
force fields corresponding to the input u € R™.
The system is called underactuated if m < n.
Suppose the objective is to stabilize a desired
equilibrium point (¢*,¢*) of this system. In the
method of controlled Lagrangians this is pursued
by searching for a possible closed loop Euler-
Lagrange system, defined by a Lagrangian L. :
TQ — R, such that (¢*, ¢*) is a stable equilibrium
point of the closed loop dynamics

d . .
7 Vile(a,d) = VqLe(a,4) = 0. (2)

The existence of a feedback law wu(q,¢) which
transforms the system (1) into the closed loop
system (2) is given by the so-called matching
conditions, which can be described as follows:

Let Gt (q) : (R"™)T — (R™)T denote a full rank
left annihilator of G(q), i.e. G+(q)G(q) =0, Yq €
Q. From (1) it follows that

6 (Vi - ViLed)) =0, )

Furthermore, since (R")? = ImG7 (¢) ImG*(q),
(2) can be equivalently written as the following set
of equations

67(a) (G Vibelad) ~ Vubelasd)) 0. (0
dt

The matching conditions are described in the
following proposition.

<¢@<EWM@®VJM@OQ (5)

Proposition 1. The systems (1) and (2) match if
and only if equation (5) holds along solutions of
the system (3, 4).

In that case the feedback law is explicitly given
by

u=(G"G)'G"| (%qu — qu> -
(%quc ~ VqLC>}. (6)

Taking into account the regularity of the La-
grangians L and L., the matching conditions can
be written as a set of nonlinear partial differential
equations, to be satisfied for all (g, ). Therefore
write out (1) as

q= _(vqu'L)_l ((ng-L)(j — V4L — GU)' (7)
Analogously, (2) can be written as
q= *(vddLC)il ((quLC)q - VqLC)- (8)

Then the matching conditions can be translated
into the following set of n — m nonlinear PDEs
(which can be obtained by equating (7) with (8))

G [Vl — (VgaL)(VgLe) ™ (VagLe) bg —
{VoL — (V44L)(VigLe) " 'VyLe}] = 0. (9)

The PDEs (9) have to be solved for the closed loop
Lagrangian L., constrained to the condition of
stabilizing the desired equilibrium point (¢*, ¢*).
Once a (stabilizing) solution L. is found, the
feedback law is explicitly given by

u=(G"G)"'G"w(q, q), (10)

where w(q, ¢) denotes the terms between square
brackets in (9). This feedback law is equal to the
one in (6). The PDEs (9) are equivalent to the
ones obtained in (Hamberg, 2000).

Now, suppose (1) describes an underactuated me-
chanical system with a Lagrangian defined as the
difference between the kinetic and the potential
energy

. 1. .
L(g,q) = 54" M(a)q = V(q). (11)
Here M = M7 describes the generalized mass

matrix of the system. Assume that M is invertible,
this is equivalent to L being regular. Following the



basic idea of the method, we consider (stabiliz-
ing) feedback laws which preserve the mechanical
structure of the system. That is, the closed loop
system (2) has a Lagrangian of the form

Lelasd) = 50 M@i ~ Vila), (12)

for some modified generalized mass matrix M, =
MT (assumed to be invertible) and potential en-
ergy function V.. In this case, the matching condi-
tions (9) split into a set of two coupled nonlinear
PDEs (corresponding to the terms dependent, re-
spectively independent, of the velocities ¢)

GH[{Ve(MG) = MM V(M) i —
{%(%q’TMq) - MMleq(éq'TMaJ)}} =0
(13)
and
G+ VeV — MMV, V] =0. (14)

Equation (13) describes the PDEs that have to be
satisfied by the closed loop kinetic energy, and is
independent of the potential energy V.. Equation
(14) describes the PDEs for the potential en-
ergy, and depends on the kinetic energy described
by M.. A solution (M., V,) of these PDEs has
to be found which stabilizes the desired equilib-
rium point (¢*,¢*) of the system. These match-
ing conditions have appeared earlier in (Auckly
et al., 2000; Auckly and Kapitanski, 2000; Ham-
berg, 1999).

Remark 1. The method of controlled Lagrangians
was first introduced in (Bloch et al., 1997; Bloch
et al., 1998; Bloch et al., 2000) within the context
of mechanical systems with symmetry. Next to
preserving the mechanical structure of the system,
the feedback law is designed to preserve the sym-
metries of the system. In particular, the potential
energy is left unchanged. Extensive computations
lead to matching conditions again described by a
set of nonlinear PDEs. These PDEs can be very
nicely interpreted in terms of the PDEs (13, 14)
describing the matching of kinetic and potential
energy, see (Blankenstein et al., 2001) for more
details.

3. MATCHING OF HAMILTONIAN SYSTEMS

Consider a port-controlled Hamiltonian system of
the form

5= J(:)V.H(z) + g(=)u, (15)

where z € M (a manifold), J(z) = —JT(2) is
a skew-symmetric matrix describing the internal
interconnection structure of the system, g(z) :
R™ — T,M is a full rank matrix describing
the input vector fields corresponding to the input
u € R™ and H(z) is the Hamiltonian (or energy)

function of the system. Analogously to the method
of controlled Lagrangians, the IDA-PBC method
uses the idea of stabilizing a desired equilibrium
point z* of the system by considering structure
preserving feedback laws. That is, the closed-loop
system is described by the equations

z= Jd(Z)VZHd(Z), (16)

where Jy(z) = —J¥(z) denotes the closed-loop
interconnection matrix and Hy(z) the closed-loop
Hamiltonian function. The existence of a feedback
law which transforms the system (15) into the
closed loop system (16) is determined by the
solvability of following matching conditions

97 (2) [Ja(2)V:Ha(2) = J(2)V.H(2)] =0, (17)

where g+ (2) denotes a full rank left annihilator of
g(2). These matching conditions have appeared in
(Ortega et al., 2001a; Ortega et al., 2001b). The
matching conditions (17) constitute a set of n—m
nonlinear PDEs which have to be solved for Hy
and Jg such that z* is a stable equilibrium point
of the closed loop system (16). Once a stabiliz-
ing solution (Hyg, Jy) is found, the corresponding
feedback law is explicitly given by

w=(g"g) g [JaV.Hs— JV.H].  (18)

In the following the method is applied to the
class of underactuated mechanical systems, see
(Ortega et al., 2001¢). A mechanical system can
be described by a port-controlled Hamiltonian
system of the form (15),

gl | 0 I,]||VH 0

=1 B[S+ L] 0o
where (g,p) (consisting of configuration coordi-
nates ¢ and impulses p) denote local coordinates
for the state space M = T*Q, with Q@ ~ R™ de-
noting the configuration space of the mechanical
system. The matrix G(q) : R™ — T7Q ~ R"
defines the force fields corresponding to the in-
put v € R™. The Hamiltonian function H(q,p)
is given by the total, i.e. kinetic plus potential,
energy in the system

H(q,p) = %pTM’l(Q)p +V(g),  (20)

where M = M7 describes the generalized mass
matrix of the system, and is assumed to be in-
vertible. Since we are interested in preserving the
structure of the system, we propose the shaped
Hamiltonian function H4(q,p) to be again of the
form (20),

Ha(a,p) = 50" M7 (@p+ Vala), (1)

for some shaped generalized mass matrix My =
MY (assumed to be invertible) and potential
energy function Vz(g). On the other hand, the



internal interconnection structure of the system
is allowed to be modified into the form
0 M~ (q)Ma(q)
Jalqg,p)= _
D= MM Ng)  Tal.p)

for some skew-symmetric matrix J2(q,p) (acting
as an extra design parameter). Notice that the
first row of J; is determined by the fact that the
relation ¢ = M ~!(q)p should also hold in closed
loop, since ¢ is a nonactuated coordinate. Then,
system (16) becomes

[zﬂ B [—MdOM‘l M};Md} [gzgﬂ . (23)

The matching conditions (17) yield
G+ [VoH — MgM ™'V Hy + JoM; 'p] = 0. (24)

Using (20) and (21) these PDEs spilt into the
following set of two coupled nonlinear PDEs

(22)

1 1,
G [Vy(5p" M ™p) = MaM ™V, (5p" My 'p) +
JoMj'p] =0, (25)

and
G [VV = MgM ™'V, Vg =0.  (26)

Analogously to the controlled Lagrangians method,
equation (25) describes the PDEs to be satisfied
by the closed loop kinetic energy, and is indepen-
dent of the potential energy V;. Equation (26)
describes the PDEs to be satisfied by Vy, and
depends on My. An important difference with
the controlled Lagrangians method however is the
presence of the matrix J,, which acts as a design
parameter which can be suitably chosen to allow
the PDEs to be solvable for specific choices of My
and Vy (directed by the stabilizability objective).
Exploiting this extra degree of freedom might
simplify the search for solutions of the matching
conditions (25,26) and help in the design of a
suitable feedback law.

4. INTEGRABILITY OF THE IDA-PBC
DESIGN

Since the class of port-controlled Hamiltonian sys-
tems is strictly larger than the class of Euler-
Lagrange systems, the matching of Euler-Lagrange
systems is a special case of the matching of
Hamiltonian systems. That is, the controlled La-
grangians method is embedded in the IDA-PBC
method. In this section it is shown that, with
respect to mechanical systems, for a particular
choice of the design parameter Jy, the IDA-PBC
method effectively results in the controlled La-
grangians method. Furthermore, the integrability
of the IDA-PBC design is studied in general.

Consider an underactuated mechanical system de-
scribed by the Euler-Lagrange equations (1) to-
gether with a Lagrangian of the form (11). The

system (1,11) can be equivalently written as the
port-controlled Hamiltonian system (19, 20), with
the impulse variables defined by p = M(q)q. Next,
consider the closed loop Euler-Lagrange system
(2) together with the closed loop Lagrangian (12).
Analogously, this system can be written as the fol-
lowing port-controlled Hamiltonian system, where
the closed loop impulse variables are defined by

pe = M.(q)g:
HE R R B

Je
together with the closed loop Hamiltonian func-
tion

Hela,pe) = 5o M7 (@)pe + Vela): (28)

It is now clear that the IDA-PBC method results
in the same closed loop system (and therefore the
same feedback law) as the controlled Lagrangians
method if and only if the closed loop Hamiltonian
system (21, 23) is equivalent to the Hamiltonian
system (27, 28).

The systems (21, 23) and (27, 28) are equivalent
up to a coordinate transformation if and only if
the Hamiltonians H. and Hy are equivalent and
in addition the internal interconnection structures
defined by the matrices J. and Jy are equivalent.
Notice that p. = M.M~!p, and calculate H, in
the coordinates (g, p) to obtain

Ho(a,p) = 5o M~ (@) Me(a) M (@) + Vela),
(29)

Therefore the Hamiltonians H. and Hy are equiv-
alent if and only if

M(q) = M(q)M;"(q)M(q), Ve(q) = Va(q) (30)

(notice that there is a one-to-one relation between
M, and My). The structure matrices J. and Jy
are equivalent if and only if J; becomes in the
coordinates (g, p.) the matrix J.. This means that
the coordinates (g, p.) should satisfy the relations

{0,4}a =0, {g,pc}a = In, {pe,pcta =0, (31)

where {-,-}; denotes the Poisson bracket corre-
sponding to the structure matrix Jy, defined by

{F1,Fola = [VoF1 VyF1] Ja [VoFs V)" (32)

for any two smooth functions F(q,p), F2(q,p). It
is easy to check that the first two conditions in
(31) are satisfied, while the last one is satisfied if
and only if Js is defined as follows

Ja(q,p) =MaM [V (MM p)]" —
V(MMM M, (33)
(note that Jo is clearly skew-symmetric). It can

also be calculated that under the conditions
(30, 33) the matching conditions (13,14) and



(25,26) are equal, as well as the feedback laws
(10) and (18). In conclusion, we have the following
proposition:

Proposition 2. The IDA-PBC method results in
the controlled Lagrangians method if and only
if the internal interconnection structure of the
closed loop system is chosen as in (33). The con-
trolled Lagrangian L. and the shaped Hamilto-
nian H, are related by (30).

Remark 2. The coordinates (g, p.), transforming
Jg into the constant matrix J., are called canon-
ical coordinates for Jy. According to the well
known Darboux Theorem, the existence of canon-
ical coordinates is equivalent to the Poisson
bracket {-,-}4 satisfying the integrability (i.e. the
Jacobi) identities.

Remark 3. In a recent publication (Chang et al.,
2001) have extended the controlled Lagrangians
method by allowing the presence of “uncon-
trollable” external forces, modeling the non-
integrable part of the closed loop dynamics. In
this way, the controlled Lagrangians and IDA-
PBC method become essentially equivalent.

More generally, let us state the conditions un-
der which the internal interconnection structure
matrix Jg (22) can be transformed into the
constant matrix J.. Without loss of generality,
see (Blankenstein et al., 2001), we can assume
that the canonical coordinates have the form
(¢,pc(q,p)). In order to transform J, into J., these
coordinates should satisfy the relations (31). The
first relation is trivially satisfied, while it can be
calculated that the last two are satisfied if and
only if the canonical coordinates have the form

(¢:pc(q,p) = (0. M(q)M7 " (q)p+ Q(q)), (34)

with Q(¢) any smooth vector-valued function of
the coordinates ¢, and

J2(a,p) =MaM ™ [[Vo (MM p)]" —
Vo(MM;'p)| M~ My +

MqM ™ [[V,Q)" = V,Q] M~ M,.
(35)

It is easy to check that the closed loop Hamilto-
nian system (21, 23, 35) corresponds to the Euler-
Lagrange system (2) with a closed loop La-
grangian L. given by

1

Le(q,4) = §dTMc(q)q' +d"Q(q) — Vo(q), (36)

where (M., V,) and (Mg, Vy) are related by (30).
Comparing (36) to (12), it is noticed that the IDA-
PBC method introduces the gyroscopic terms
i"Q(q) (i.e., linear in the velocities ¢) in the
closed loop Lagrangian function. Thus, we have
the following proposition.

Proposition 3. The IDA-PBC method results in
a closed loop Euler-Lagrange system if and only
if the internal interconnection structure of the
closed loop system is chosen as in (35). In general,
gyroscopic terms are introduced in the closed loop
Lagrangian.

Notice that taking @ = 0 (i.e. no gyroscopic
terms) yields proposition 2. Finally, consider the
matching conditions (25). Plugging J» (35) into
(25) and separating the terms which are quadratic
and linear in the p variables, yields the following
two matching conditions:

G*M M [V, Q)T =V, QM =0, (37)

and secondly the condition (25) with Jo substi-
tuted by the expression (33). This shows that the
gyroscopic forces should independently satisfy the
matching condition (37).

5. FINDING SOLUTIONS OF THE
MATCHING CONDITIONS

Since the matching conditions (13, 14) and (25, 26)
constitute a set of nonlinear PDEs, they are not
easy to solve in general. In this section we shall
briefly describe two methods which can help in
the problem of finding solutions of these PDEs.

First, in (Gémez-Estern et al., 2001) it is shown
that for a special class of port-controlled Hamil-
tonian systems of the form (19,20) the PDEs
(25,26) can be transformed into a set of nonlin-
ear ordinary differential equations (ODEs). Obvi-
ously, such a set of equations is much easier to
solve. The class of systems for which this trans-
formation is possible is defined by the following
assumptions: i) the system is assumed to have n
degrees of freedom and n — 1 actuators (i.e. there
is only one unactuated coordinate), and ii) the
kinetic energy matrix M is assumed only to de-
pend on the unactuated coordinate. This class of
systems is quite common in underactuated me-
chanical systems and includes for instance the
well known example of a cart and pendulum. By
choosing the shaped kinetic energy matrix M, to
only depend on the unactuated coordinate, it can
be shown that the set of PDEs (25,26) can be
transformed into an equivalent set of ODEs. In
(Gémez-Estern et al., 2001) the method is applied
to the examples of a cart and pendulum system
and a ball and beam system.

Secondly, in (Auckly et al., 2000; Auckly and
Kapitanski, 2000) a method called the A-method
is described to solve the PDEs (13, 14) by recur-
sively solving a set of three linear PDEs. This
greatly reduces the complexity of finding solu-
tions. Basically the method proceeds as follows:
Define G to be an orthogonal projection matrix



of rank n — m such that GG = 0. Then the
matching conditions remain unaltered if we sub-
stitute G+ for Gt in (13, 14). Next observe that
(13) defines a quadratic expression in the variables
q. Hence, we can polarize this expression to ob-
tain an equivalent expression which is bilinear in
the new (‘velocity’) variables vy, vs. Introduce the
matrix A = M 1M. Then taking v; = \G-Mv}
and premultiplying (13) with (v])T M yields after
some extensive algebra a linear PDE to be solved
for A\G+ M. Given a solution A\G*M of this linear
PDE, a second linear PDE can be obtained from
(13) which is to be solved for A\. Knowing A we
have found a solution M, of the nonlinear PDE
(13). Finally, given M., (14) becomes a linear PDE
to be solved for V. In (Auckly et al., 2000; Auckly
and Kapitanski, 2000) this method is applied to
obtain a stabilizing control law in the cart and
pendulum example.

In (Blankenstein et al., 2001) it is shown that
the A-method can also be applied to the match-
ing conditions (25, 26) obtained in the IDA-PBC
method. However, instead of resulting in a set
of three linear PDEs, the method results in one
quadratic PDE and two linear PDEs. In fact, the
first PDE becomes a quadratic PDE in AG+-M
(where A = M ~1Mjy). Tt is quadratic in the sense
that there appear terms which are quadratic in the
components of A\G+ M, however, the derivatives of
MG+ M still appear linearly in the equation. Fur-
thermore, this PDE (linearly) contains the matrix
Jo, which acts as a design parameter. Exploit-
ing the freedom in J; might further simplify the
search for solutions of this PDE. Having found
a solution A\G+M for this quadratic PDE, this
results in a linear PDE for A, which again results
in a linear PDE for Vj.

6. CONCLUSIONS

In this paper two recently developed methods for
stabilizing underactuated mechanical systems are
described and compared. It is shown that the
controlled Lagrangians method is embedded in
the IDA-PBC method. The integrability of the
latter method is studied in general, yielding ex-
plicit expressions for the internal interconnection
structure of the closed loop system.
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