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Abstract:

In this paper, we propose an efficient procedure of physical parameter

identification of a magnetic levitation system, where the levitated steel ball is controlled
by a robust nonlinear controller which is designed based on rough nominal parameters.
Design techniques of the robust nonlinear controller are described and parameter iden-
tification results are included. Finally, it is shown that position tracking performance
can be improved by using the identified parameters. Copyright (© 2002 IFAC
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1. INTRODUCTION

Due to strong open-loop instablility and inherent
nonlinearities, the control problem of a magnetic
levitation system is usually quite challenging to
the control engineers. Practically, it is often of
particular interest to know the exact physical pa-
rameters of the system under study, for system
simulation, analysis and control performance as-
sessment. In this paper, we first propose a robust
nonlinear controller in the presence of parametric
uncertainties. This makes it possible to identify
the physical parameters accurately in closed-loop,
where the robust controller is designed based on
rough nominal parameters. Then we propose an
efficient procedure of physical parameter identifi-
cation of a magnetic levitation system.

2. MODEL OF THE MAGNETIC
LEVITATION SYSTEM

Consider the magnetic levitation system shown in
Fig. 1, whose dynamics can be described in the
following equations (Joo and Seo, 1997).
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Fig. 1. Diagram of the magnetic levitation system.
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where © = [z, 29, 23]7 = [2,2,i]7 is state vari-
able vector. And, a: air gap (vertical position)



of the steel ball; i: coil current; g: gravity accel-
eration; M: mass of the steel ball; R: electrical
resistance; u: voltage control input; L., @ and
X oo positive constants determined by the charac-
teristics of the coil, magnetic core and steel ball.

Denote the nominal physical parameters as go,
My, Ry, Loco, Qo and X_o, we have the nomi-
nal nonlinear functions and the modelling errors
respectively as the following.

Q0$§

) = S Ko - 12
23{Qoz2 — Ro(Xoco + #1)?}
T)= — (3
fo(@) Qo (Xooo + 1) + Loco(Xoco + 1) )
XooO +~7:1
Yo(z)

- Qo + Looo(Xooo + 1)

Aa(z) =) — a0 ()
Ap(x)=p5(x) — fo(x) (4)
Ay(@)=7(x) = 0()

3. COORDINATE TRANSFORMATION

To convert the original nonlinear system into a
system that is “simpler” in the sense that con-
troller synthesis is more straightforward, we adopt
the following nonlinear coordinate transformation
(Isidori, 1995).

E=[1, &, &) =[z1, 72, ap(@)]"  (5)

Remark 1: According to Fig. 1, the diffeomor-
phim & = T'(x) is only locally defined in a com-
pact feasible region 2, = {w|0 <z <z1M, T3>
0} C R?, no matter what the control strategy is.

Hence the nonlinear state space model (1) is
transformed into

E1=6

Ea=go+ Ay + &3 <1 + A(,—(w))

ap(a)

(6)

E3=Fy (@) + Fo (2) + Ap () + u(Go (@) + Ag (@)

where
2
Fi(z) = 7]‘/[0(;3::71 m1)3;1:2 (7
Fo () = Qoxl {Qomz — Ro(Xoo0 + 371)2} (®)
prE= (Xoo0 + 21)%{Q0 + Loco( X0 + 1)}

_ QoT3
Go (=) = Mo(Xoco +21) {Qo + Loco(Xoco + 1)} )
Br (@) =~ Ase)  (10)
Ag (@) = ——— 20T A (2) (11)

Mo(Xoco + x1)?

4. DESIGN OF THE CONTROLLER

It is assumed here that the reference position y,.
of the steel ball and its first, second and third

derivatives, i.e., y,, . and yfa) are continuous,
uniformly bounded, and available.

Step 1:
Define the error signals of & and & as

n=&-Y, nn=8E—-0 (12)

where «; is a virtual input to stabilize z;.
Then we have subsystem S1 as the following.

?:'1 =1 + 22 ’"yr (13)

The virtual input «y is designed based on the
common PI control technique.

t

a1 = —C1p21 — 15 / 21 dt + 9, (14)
0

where Clp > 0, ¢1; > 0.

Denote the Laplace operator as s. Then subsystem
S1 controlled by @y can be expressed as
829

1= o
§° 4+ C1p8 + €y

(15)

Therefore, if the velocity error zo is stabilized to
a neighbourhood of the origin, |z;| can be made
sufficiently small, and the offset of z; can be
removed by the integrator.

Equation (15) can be put into the following state-
space model.

21(1 =A Z1q + B Z9 (16)
where z;, = [fot 2 dt, z;]" and

A:[_gu M;p], B=[0 1]" (17

As a preparation for the input-to-state stability
(ISS) * analysis of the overall error system dis-
cussed later, we have here the ISS of subsystem
S1 with respect to z2 by lemma 1.

Lemma 1. If 2z, is continuous and uniformly
bounded, then S1 is ISS, i.e., for g > 0, %ap > 0
and M >0,

1 (8] < Aae =" 210 (0)] + M [ sup mm@
0<r<t

Step 2:
Define
z3=E83 — (18)

where s is a virtual input to stabilize z,.

1 In this paper, both Input-to-State Stability and Input-
to-State Stable will be denoted as ISS for convenience.



Then we have subsystem 52 as

Aq(®) afx)

Zo=—0&1 + g0+ Qg+ + a2 + 23
ao(®) ao(®)

(19)

Motivated by the works of Krstic et al. (1995),
we design the virtual input ay as the following to
stabilize subsystem S2.

Qg =00 — Q21 — Q23
Qo9 = —C222 + (541 - 4o

Q21 = K2140%2
Qo9 = kaa\/ a3y + V2o

where cs > 0, ko1 > 0, K29 > 0, v = 0.01. agg is
a feedback linearization controller of the nominal
system model, while as; is a linear damping term
to counteract Ay, and ass is a nonlinear damping
term to counteract A,.

(20)

Applying the virtual input ., we have

. 2 afx)
Zy = —C222 — | K2190%2 + K224/ Q5 -+ V22

ao(®) .
- - (21)
+Ay + i:((:c)) a0 + 50((2) 23

Based on equations (20) and (21), we can show
the following result:

Lemma 2. If 235 is continuous and uniformly
bounded, then S2 is ISS such that

|22(8)] <[22(0)|e™2*% + sup [pa1(7) + poz(7)23]

0<r<t

with respect to the following continuous and uni-
formly bounded functions.

Aale
\Ag|+‘ ( )azo

/‘2](” = c Dc(:l:) aO(w)
/?2 + PES) <n21go + K224/ 0450 + I/)
a(e)
poa(t) = — . ao(®)
; + 50((33) <n21go + K224/ 0450 + I/)
Step 3:

Through straightforward but tedious calculations
based on some previous equations, we have

dg:FQ—Eg (a0+go)—F3(Aa+Ag) (22)

Fr =
{1 — kaz(ady + u)“0'5a20z2} {C1Pijr —criz1 t+ yf«3)}
2 —0.5 . (23)
+eg {1 — Rraz(agy + )7 (12022} é

+ {52190 + k22(adg + V)0'5} al}

Fsy=ca + c1p + k2190 + kaz(ady + )05

—(e2 + c1p)r92(03g + v) %P azgz

(24

~—

Then we have subsystem &3 as
Z3=E —

(25)
=V + Ag(z) + Go(x)u + Ag(x)u

where
\I’OZFO -+ F1 - FQ -+ E3 (040 +90)

Similar to the design technique in step 2, the
control input is designed as

30 — Q3] — Q32 — 33
U=
Go(z)

azo=—c3z3 — Yo
3] = K31 (1 — 0.5€_>‘1|Z3‘) 0423
32 = K32 (1 — 0.5e—>‘2|23‘) ‘F3|(‘040‘ —I—go)Zg

33 = K33 (1 — 0.5€_>‘3|Z3‘) ‘a30‘23

(27)

where ¢c3 > 0, k31 > 0, k39 > 0, k33 > 0, and

o Qo3 {Qolzz| + Ro(Xoco + 21)* }
* 7 (Xeoo + 21%{Q0 + Loco(Xeco + 1))

(28)

Here, a3p is a feedback linearization controller,
and a31, @39 and agz are nonlinear damping terms
employed to counteract the modelling errors Ap,
F3(A, + Ag) and Ag respectively. Also, notice
that (1 — 0.5e~*l%30), § = 1,2,3 are introduced
to reduce control efforts due to the nonlinear
damping terms, when |z3| is relatively small.

When the designed u is applied to subsystem S3,
its dynamics becomes

2’3 = —(C323 + AF(iB) + F3 (Aa(ilf) + Ag)
Ag() as1 + oz +azs (29)
Go(w) 30 Go(m)

Similar to those in step 2, we have the ISS of
subsystem &3 as shown in the following lemma.

- G(z)

Lemma 3. Assume that a stays in the feasible
region Q, = {:L"O <z < xim, x3 > 0} If the
control input u« is applied to subsystem §3, then
S3 is ISS:

|25(8)| <|23(0)| €% + sup ps(7)
0<r<t

with respect to the following continuous and uni-
formly bounded function.

Ag(=)aso
Gol(z)
G(e) (k31 Foa + r32|F3|(Jao| + g0) + £33]aso|)
2Go(=)

[Ar(z)| + |F3 (Aa(z) + Ag)| + ‘

pa(t) = .
5 +

5. PARAMETER DESIGN AND
TRAJECTORY INITIALIZATION

It is recommendable to choose modest ko1, a2,
K31, Ka2, Kz to avoid noisy or large control ef-
forts. In contrast, ¢ip, €14, €2, ¢3 can be chosen



relatively large, without causing large amplitude
of the control input. To further improve the posi-
tion tracking error |z;| with moderate control ef-
forts, more accurate nominal physical parameters
are helpful, as shown later in Figs. 6~7.

Lemmas 1 ~ 3 imply that the initial conditions
z1(0), 22(0), z3(0) can influence the transient
performance significantly. Suppose the steel ball is
initially at rest with z;(0) = z1 and z2(0) = 0,
then if we choose the initial conditions of the
reference trajectory such that y.(0) = z1(0) and
-(0) = §,(0) = 0, we have z(0) = 2z2(0) = 0.
Also from equation (18) we have

Qoz3(0)
2M0{Xooo + (0)}2

z3(0)=g0 - (30)

Thus z3(0) can be made relatively small, if we
set the initial coil current signal z3(0) to an
appropriate value.

6. STABILITY OF THE OVERALL
ERROR SYSTEM

Combining the results of lemmas 1~3, we have
the overall error system as

121a(8)] < Aoe™ 0% 214(0)| + M

sup Izz(T)]

0<r<t

22()| <122(0)|e ™22+ sup [uo1(7) + pa2(7)23] (31)
0<r<t

z3(t) <|23(0)[e™ /% + sup ps(r)
0<r<t

Since the overall error system is a cascade of the
three ISS subsystems characterized by lemmas
1 ~ 3 respectively, we can conclude based on
lemma C.4 in Krstic ef al. (1995) that the overall
error system is also ISS. Define

2(t) = [21,, 22(1), 23 (B)] T (32)

Then along the same line of the proof of lemma
C.4 in Krstic et al. (1995), we have the following
results.

|2(t)] < Bsl2(0)]e™72" + sup ps(r)
0<r<t

(33)
+(B1 + 1)(AoM + M +1) | sup [p21(7) + Bap3(7)]
0<r<t
where
81 =max (A3,3MXo,3M,3))
B2 =122l
B3 = Bsomax (BF,382(AoM + M + 1)1,
362(AoM + M +1),3) (34)
o = |21 (0)] + 21 (0)] + [22(0)] + |z3(0)]
30 —

|=(0)]
p2 =min(ag/4,¢2/8,c3/4)

However, as mentioned in remark 1, the results
obtained here are valid only in 2, = {x]|0 < z; <

x1a, 3 > 0} C R? no matter what the control
strategy is. To ensure the controller feasible, we
should verify if there is a compact set D, such
that € D, C Q..

If the smooth reference trajectory is appropriately

chosen such that y,.,9,, ¥, y$3) € Dy, where

Dyr = {yrayr:ﬂray£3)| 1 S Yr S T1M _57 ‘yT| Sgrz (35)

. e 3 =(3 - = (3
| < 5o oV <7, 26,%5,.75,, 55 > o}

then we can make the error signal z stay in a
compact set, i.e., z € ), = {z| |z(t) <z, Tz >
0} C R* where S can be made sufficiently
small by an appropriate set of reference trajectory,
initial states and design parameters, according to
inequality (33).

As long as z € (), i.e., the steel ball is levitated
and tracks a smooth reference trajectory with
acceptable accuracy, we can conclude that the
electromagnet is exerting an attractive force to
counteract the gravity, i.e., zg > 0 is ensured
in generic cases. Therefore we can conclude that
there exists a compact set D, such that x € D, C
.. Finally, based on the above discussions and
lemmas 1~3, we have the following results.

Theorem 1. If the proposed robust nonlinear con-
troller is applied to the magnetic levitation system
under study and if the reference trajectory and
the initial states are chosen appropriately, the
following results hold.

(1) There exists a compact set D, such that
LUG,D@CQ‘E:{QImSZElSZUlM, T3 >
0} C R3.

(2) The overall error system is ISS such that

|z(t)] < B3]z(0)[e™?2" + sup ps(r)
0<r<t

+(A1+1)(AoM + M +1) | sup [p21(7) + Bop3(7)]

0<r<t

(3) The steady offset of z; approaches zero.

3. PHYSICAL PARAMETER
IDENTIFICATION

Owing to the proposed robust nonlinear con-
troller, it becomes possible to identify the phys-
ical parameters accurately in closed-loop, where
the robust controller is designed based on rough
nominal parameters. In this section, we propose
an efficient procedure of physical parameter iden-
tification of a magnetic levitation system.

The nominal parameters provided by the system
manual (Japan EM, 1996) are shown in Table 1. It
is not easy to verify if they are correct except the
mass of the steel ball and the gravity acceleration.
To control the steel ball, the robust controller is



Table 1. Physical parameters in the sys-
tem manual

M 054 k]

g 9.8 m/s?
Xoo 0.00643 m)]

Q 0.00086173 Hm)]
Lo 0.7886 H

R 11.6 Q

designed based on the following nominal parame-
ters which are rougher than those in Table 1.
My = 0.54[kg], go = 9.8[m/s?]
Xooo = 0.0050[m], Qo = 0.0010[Hm] (36)
Lo,o = 0.50[H], Ry =10.0[€]

Since the unknown parameters appear nonlinearly
in equation (1), we propose here a two-stage
identificaion procedure based on closed-loop data
by virtue of the robust nonlinear controller, such
that the linear LS method is applicable. At the
first stage, @ and X, of the mechanical motion
equation are identified by regulating the steel ball
constantly to various desired positions. Then at
the second stage, R and L., of the electrical
dynamic equation are identified by making the
steel ball track a sinusoidal trajectory such that
persistently exiciting data for identification are
generated. The concrete identification procedure
is described as follows.
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Fig. 2. Position z; that is regulated to a constant position.
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Fig. 3. Position z; that tracks a sinusoidal signal.
7.1 Identification of Q and X

According to equation (1), we have

Q3 (37)

2T T M (Xeo 4 01)?

If the steel ball is regulated to a desired constant
position, then we have x5 = 0 at the steady state
and hence

=970
¥ = [V/a3/grn), 1] (38)
0= [\/6 Xoo]T

Let the steel ball be regulated to various positions
such as 12.5,12.0,11.5,11.0, - - -, 3.5, 3.0[mm], and
measure x; and z3 at the steady-state for each
position, then we can identify @ and X, by the
linear LS method, if ¢ and M are known. An
example of position regulation is shown in Fig.
2.

Remark 3: There is an extensive literature on
closed-loop identification for linear transfer func-
tion models, see Forssel and Ljung (1999) and
the references therein. This case study however,
differs from the standard approaches in stochastic
framework, such as prediction error method etc.
Notice equation (38) describes the static relation
of the signals at steady states. At each steady
state, the measured x; and z3 are obtained as
their averaged measurements over a certain period
of time such that the zero-mean noise effects are
removed.

7.2 Identification of R and L,

From equation (1), we have

{Qz2 — R(Xoo + @1)°}as
Q(Xoo + 1) + Loo (Xoo + 21)2
(Xeo +21)u
Q+ Loo(Xoo + 1)

o (39)
_F

Replacing the differential operations by the back-
ward finite difference approximation and rear-
ranging equation (39), we have

n2(t) = 07 (£)8 (40)

where

0=[Lo., R]¥

)= [ ) 2T

23(t) — x5(t = T) (41)

xl(t)jl xl(t — T)
T

n2(t)=—Q
Qas + (Xeo +21)%u

Xeoo + 21

+

Furthermore, equation (40) can be rewritten as

ia(t) =7 ()0 (42)
where
~ T (1) - t
i 0= O, i = % (43)

and 1/(As + 1)? is a lowpass filter employed to
reduce the noise effects. In this study, it is chosen
such that A = 0.1. The lowpass filter is discretized
by the bilinear transformation, with sampling
interval T' = 0.0005[sec].

Remark 4: Although the LS method is usually
biased in the presence of significant noise, owing to
the noise reducing effects by the low-pass filters, in
this study, the LS estimate is still satisfactory and
reliable, see Fig. 5 which indicates the simulation



error of equation (39) with identified physical
parameters.

Table 2. Identified parameters

X.o 0.008114 [m]
Q  0.001624  [Hm)]
Lo 0.7987 H
R 11.88 Q

In order to make the regressor n{ (t) persistently
exciting such that L., is identifiable, let the steel
ball track a sinusoidal signal as shown in Fig. 3
and measure z1, z3 and « with sampling period
T = 0.0005[sec]. Then R and L, can be identified
by the LS method based on equation (41), if ) and
X are already identified as described previously.
It should be noticed here that we have verified
that the estimates are not sensitive to the period
of the sinusoidal signal.

Equation error

i
3 4 5 5 7 8 9 10 11 12

%, [mm]

Fig. 4. A comparison of equation errors of equation (3).

7.3 Identification results

By using the proposed identification procedure,
we have the identified parameters as shown in
Table 2. It can be verified that the estimates of
R and L. are similar to those in Table 1, while
the estimates of @@ and X, differ significantly
from those in Table 1. To verify the reliability of
our results, we show in Fig. 4 the equation errors
of equation (37) at various steady positions re-
spectively, where the circles indicate the equation
errors by the identified parameters, while the x-
marks indicate those by the parameters shown in
Table 1. It can be seen that the identified @ and
X~ yield much smaller equation errors. Also, to
evaluate the identified R and L., we show in Fig.
5 the simulation error of Z3 obtained by peforming
numerical integration on equation (39) where the
identified R and L., and those in Table 1 are used
respectively (for @ and X, only the identified
values are used since they are much more reliable).
It can be seen that although both are acceptable,
our estimates yield smaller error.

Finally, the position tracking performances for a
fast changing reference trajectory by using the

Error
o

Time [sec]

Fig. 5. A comparison of simulation error z3 — 3.

physical parameters taken from Table 1 and Table
2 respectively are shown in Figs. 6~7. It can be
verified that the identified physical parameters are
helpful to improve the control performance.
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Fig. 6. Performance of position control by the parameters
in Table 1.
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Fig. 7. Performance of position control by the parameters
in Table 2.

4. CONCLUSIONS

In this paper, we proposed a robust nonlinear
controller via backstepping design approach, for
position tracking problem of a voltage controlled
magnetic levitation system in the presence of
uncertainties of the physical parameters. Then
we proposed an efficient procedure of physical
parameter identification of a magnetic levitation
system in closed-loop, where the levitated steel
ball is controlled by the proposed robust nonlin-
ear controller which is designed based on rough
nominal parameters. We believe that the identifi-
cation results are helpful for simulation, analysis
and control performance assessment of the system
under study.
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