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Abstract: This paper presents a servo strategy of Generalized Minimum Variance
Control (GMVC) with a two degree of freedom. If GMVC fasts the transient response
by tuning the control signal weight of the cost function, a large overshoot remains.
This paper introduces the two degree of freedom GMVC. The two degree of freedom
function curbs the overshoot, while the satisfactory transient characteristic holds.
This paper presents two type methods for two degree of freedom: One is setting a
reference signal filter in the feedforward part of the closed loop systems, the other is
setting a rational function into the cost function. This paper recommends two degree
of freedom method with the rational function for the simplification.
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1. INTRODUCTION

Generalized Minimum Variance Control (GMVC)
(Åström et al., 1977; Clarke and Gawthrop, 1979;
Wellstead and Zarrop, 1991) is an effective control
for plants including a time delay. In particular,
GMVC has the control weight in the cost function
and it can apply to the nonminimum phase sys-
tems while the stability of the closed loop systems
holds.

The purpose of the control weight is to curb the
input energy to plant. However, if the control
signal weight S(q−1) of the cost function strength-
ens, the transient response becomes slowly. In this
paper, Jurry stability criterion (Ackermann, 1985)
applies to the closed loop systems of GMVC to
evaluate the response property. For the satisfac-
tory response, the proposed GMVC curbs the
control signal weight and further places the poles
of the characteristic equation of the closed loop
systems within the desired region. In the con-
tinues systems, the desired region of the discrete
time systems corresponds to the region within 45
degree line of left side on the s-plane. However,

when the control weight is fixed with the Jurry
criterion, a large overshoot of the output remains,
although the transient response efficiently fasts.
The original GMVC can not reject the overshoot
as it is.

This paper introduces the two degree of freedom
GMVC (Takahashi et al., 1998b). The two degree
of freedom function curbs the overshoot of the
response. This paper presents two type methods
for two degree of freedom: One method is that a
filter is set in the feedforward part of the closed-
loop systems. The transfer function of the filter
is derived from the reference model (Yamamoto
et al., 1992; Shigemasa et al., 1983). The other
method is that the reference signal weight R(q−1)
of the cost function includes two degree of free-
dom function instead of setting the filter. Both
methods have the same transient characteristic.
Therefore, the second method is simpler structure
than the first method.

This paper verifies the response property of the
proposed GMVC with simulation. The simulation
confirms the effects of the control signal weight
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S(q−1) at the various values and setting the
two degree of freedom function. Furthermore, the
simulation results are compared with the pole
placements of the characteristic equation of the
closed loop systems.

2. TWO DEGREE OF FREEDOM GMVC

This chapter verifies the transient characteristic
of GMVC. To improve the transient characteris-
tic, this chapter introduces the method for the
evaluation of the stability and the two degree of
freedom function.

2.1 A design of Generalized Minimum Variance
Control

Consider a single input single output system, de-
scribed as the following Controlled Auto Regres-
sive and Integrated Moving Average (CARIMA)
model:

A(q−1)y(k) = q−jB(q−1)u(k) + C(q−1)
ξ(k)
∆

,

(1)

A(q−1) = 1 + a1q
−1 + · · ·+ anq−n, (2)

B(q−1) = b0 + b1q
−1 + · · ·+ bmq−m, (3)

C(q−1) = 1 + c1q
−1 + · · ·+ clq

−l, (4)

where y(k) is an output signal, u(k) is a control
signal, q−j represents a time delay of plants and
ξ(k) is a white noise with the zero mean and
the variance σ2. A(q−1), B(q−1) and C(q−1) are
polynomials of q−1, such as a backward shift
operator. ∆ is a difference operator (1 − q−1).
The generalized output in the cost function J =
E{h(k + j)2} for the servo GMVC, based on the
internal model principle, is expressed as follows:

h(k + j) = P (q−1)y(k + j) − R(q−1)w(k + j)

+ S(q−1)∆u(k), (5)

P (q−1) = 1 + p1q
−1 + · · ·+ pnpq

−np , (6)

R(q−1) = r0 + r1q
−1 + · · ·+ rnrq

−nr , (7)

S(q−1) = s0 + s1q
−1 + · · ·+ snsq

−ns, (8)

where w(k) is a reference signal. The polynomials
P (q−1), R(q−1) and S(q−1) are the weights of
the cost function. At this point, y(k + j) in the
generalized output (5) must be predicted, because
it can not be observed at time k. Then, the
following Diophantine equation is introduced as

P (q−1)C(q−1) = E(q−1)∆A(q−1) + q−jF (q−1),

(9)

E(q−1) = 1 + e1q
−1 + · · ·+ ej−1q

−(j−1),

(10)

F (q−1) = f0 + f1q
−1 + · · ·+ fhq−h, (11)

h1 = max{n, np + l − j}. (12)

Note that the filter ∆ of equations (5) and (9)
provides the servo characterisitic against changing
the reference signal and loading the disturbance.
When both sides of the CARMA model (1) are
multiplied by E(q−1)∆ and the Diophantine equa-
tion (9) is substituted for the E(q−1)∆A(q−1), the
j-steps-ahead optimal prediction is derived from

ŷ(k + j | k)

=
E(q−1)∆B(q−1)u(k) + F (q−1)y(k)

P (q−1)C(q−1)
. (13)

Substituting equation (13) for equation (5) and
minimizing the cost function provide the servo
GMVC

u(k)

=
1
∆

C(q−1)R(q−1)w(k + j) − F (q−1)y(k)
E(q−1)B(q−1) + C(q−1)S(q−1)

.

(14)

Figure 1 shows the block diagram of the closed-
loop system of GMVC.

2.2 Problem formulation

Combine CARMA model (1) and the servo
GMVC (14), the transfer characteristics of the
closed-loop control system is derived from

Gwy(q−1) =
B(q−1)C(q−1)R(q−1)

T (q−1)
, (15)

Gdy(q−1) = ∆q−jB(q−1)

×E(q−1)B(q−1) + C(q−1)S(q−1)
T (q−1)

,

(16)

T (q−1) = P (q−1)B(q−1) + ∆S(q−1)A(q−1),(17)

where equation (15) is a transfer function from the
reference signal w(k) to the output signal y(k).
On the other hand, equation (16) is from the
disturbance d to the output signal y(k). T (q−1) of
equation (17) represents a characteristic equation
of the closed loop systems.
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Fig. 1. Block diagram of servo GMVC



However, the reference signal tracking property
(15) and the disturbance rejection (16) can not
freely change due to the restricted condition
P (1) = R(1) (Tuffs and Clarke, 1985; Heath
and Wellstead, 1995), because if R(q−1) of equa-
tion (15) changes to improve the tracking prop-
erty, P (q−1) of the denominator of equation (16)
also changes according to the restricted condition
P (1) = R(1). In other words, the response prop-
erties of both equations (15) and (16) change at
the same time.

2.3 Decision of the weights in the cost function

The weights P (q−1), R(q−1) and S(q−1) in the
generalized output (5) improve the feedback char-
acteristic. However, GMVC is restricted by the
condition P (1) = R(1) (Tuffs and Clarke, 1985;
Heath and Wellstead, 1995) that holds the servo
mechanism. Therefore, only the control signal
weight S(q−1) can change. This section presents
the decision of the control signal weight S(q−1). If
the control signal weight S(q−1) strengthens, al-
though the input energy to the plant can be curbs,
the transient response become slowly. Then, this
paper introduces Jurry criterion to evaluate the
response property. Figure 2 shows the pole loca-
tions for discrete time systems. If all the poles of
the characteristic equation is located within the
unit circle, the closed loop system is stable. In
figure 2, the shaded region represents a desired
region (Mori et al., 1995), which means the region
within 45 degree line of left side on the s-plane
in the continues systems. The purpose is to find
the range of S(q−1), which includes all the poles
of the characteristic equation into the desired
region. Furthermore, the minimum value of the
derived range of S(q−1) is choosen in order to fast
the tansient response if possible. For instance, if
the derived range of S(q−1) is from 2.5 to 11.5,
S(q−1) = 2.5 is chosen in the proposed GMVC.

q-planeq-plane

Fig. 2. Desired region of closed loop pole locations

2.4 Structure of two degree of freedom control
systems

To improve the reference signal tracking property
and the disturbance rejection respectively, this
section presents a two degree of freedom control
GMVC. The two degree of freedom function is
derived from the reference signal filter H(q−1).
Then, the transfer functions of the reference signal
tracking property and the disturbance rejection
are

Gwy(q−1) =
H(q−1)B(q−1)C(q−1)R(q−1)

T (q−1)
, (18)

Gdy(q−1) = ∆q−jB(q−1)

×E(q−1B(q−1)) + C(q−1)S(q−1)
T (q−1)

.

(19)

The reference signal filter H(q−1) matches with
a reference model (Yamamoto et al., 1992; Shige-
masa et al., 1983)

Gm(q−1) =
rB(q−1)

(1 + d1q−1 + d2q−2)V (q−1)
, (20)

r =
(1 + d1 + d2)V (1)

B(1)
. (21)

The model matching relation Gwy(q−1) = Gm(q−1)
provides

H(q−1) =
T (q−1)Gm(q−1)

B(q−1)C(q−1)R(q−1)
. (22)

Substitute equations (17) and (20) for equation
(22), the reference signal filter is expressed as

H(q−1)

=
rC(q−1){P (q−1)B(q−1) + ∆S(q−1)A(q−1)}
(1 + d1q−1 + d2q−2)C(q−1)R(q−1)V (q−1)

,

(23)

where d1, d2 and V (q−1), based on the ref.(Yamamoto
et al., 1992), improve the reference signal track-
ing property. Therefore, if H(q−1) changes to
improve the reference signal tracking property
(18), no H(q−1) effects the disturbance rejection
(19). Hence, the reference signal tracking prop-
erty and the disturbance rejection is tuned re-
spectively with the 2 degree of freedom function
(Takahashi et al., 1998a; Araki, 1985). Figure 3
shows the closed loop system of two degree of free-
dom GMVC. The reference signal filter H(q−1)
is set in the feedfoward part of the closed loop
system. Then, the two degree of freedom GMVC
is derived as

u(k)



=
1
∆

H(q−1)C(q−1)R(q−1)w(k + j) − F (q−1)y(k)
E(q−1)B(q−1) + C(q−1)S(q−1)

.

(24)

+++

d

q
j
CR

1

BE + CS

F
Controller

1w(k)
+ +- B

j
q

A

C

A

Plant

y(k)
u(k)

H

The reference-

signal-filter

x (k)

+++

d

q
j
CR

1

BE + CS

F
Controller

1w(k)
+ +- B

j
q

A

C

A

Plant

y(k)
u(k)

H

The reference-

signal-filter

x (k)

Fig. 3. Structure of GMVC with the reference-
signal-filter

3. SIMULATION

This chapter argues the simulation, which GMVC
applies to the following model, used in ref.(Palsson
et al., 1993; Palsson et al., 1994)

(1 − 0.56q−1)y(k)

= q−2(0.35 + 0.18q−1 + 0.18q−2)u(k)

+ ξ(k)/∆. (25)

The simulations are the time responses of the
closed-loop systems. In all the simulations, the
reference signal is changing at k = 20 from 0 to
1, the disturbance of magnitude 0.1 is loaded at
k = 80, the variance of noise ξ(k) is 0.01 and
the time delay of the plant is 2 steps. Although
the weights of the cost function are P (q−1) =
R(q−1) = 1 due to the restriction (Tuffs and
Clarke, 1985; Heath and Wellstead, 1995), the
control signal weight S(q−1) = λ changes in the
respective simulations. In the plant, the range,
which includes all the poles of the characteristic
equation into the desired region, of the control
signal weight is derived from λ(2.41 < λ < 11.55).
Figure 4, figure 5 and figure 6 show the simulation
results of λ = 0, λ = 2.5 and λ = 11.5 with the
original GMVC. (a) shows the range of λ that
includes all the poles into the desired region and
the value of λ in respective simulations. (b) locates
the poles of the closed loop systems and (c) shows
the step responses of the closed loop systems with
GMVC. A dotted line is the control signal u(k)
and a solid line is the output signal y(k).

Figure 4 is Minimum Variance Control (MVC)
because of λ = 0. Although the output y(k)
in figure 4 entirely tracks the reference signal,
the control signal u(k) consumes the vast input
energy. Therefore, it is not practical.

Figure 6 shows the result of λ = 11.5. Although
all the poles at λ = 11.5 are included into the
desired region, the transient response is slow. On
the other hand, figure 5 at λ = 2.5 shows sufficient

transient response. λ = 2.5 is the minimum value
of the range that includes all the poles into the
desired region. However, the overshoot remains in
the transient response of figure 5.

Figure 7 shows a step response in the case of
the two degree of freedom GMVC. In this paper,
the Binomial model (Shigemasa et al., 1983),
which has no overshoot, applies to the reference
model for the two degree of freedom function. The
result confirms that the two degree of freedom
function curbs the overshoot, while the transient
characteristic of λ = 2.5 holds. Furthermore, two
degree of freedom GMVC at λ = 2.5 also rejects
the efficient of disturbance.
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Fig. 4. Step responses of the closed loop system
(In the case of λ = 0.0)

4. RATIONAL FUNCTION OF THE
REFERENCE SIGNAL WEIGHT R(Q−1) FOR

TWO DEGREE OF FREEDOM

If the reference signal weight of the cost function
can form a rational function, the reference signal
weight substitute for the filter, such as two degree
of freedom function, in sec. 2.4. The relation
between H(q−1) and R(q−1) is expressed as

R′(q−1) = H(q−1)R(q−1). (26)

Figure 8 shows the relation in (26). The refer-
ence signal weight R′(q−1) in figure 8 has the
two degree of freedom function instead of the
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independent filter H(q−1) . In the case of the
rational function R′(q−1), this section verifies that
whether R′(q−1) satisfies the restricted condition
R′(1) = P (1). Substitute the filter (22) for the
relation (26) of the rational function

R′(q−1) =
T (q−1)Gm(q−1)
B(q−1)C(q−1)

. (27)

Further, substitute the characteristic equation
(15) T (q−1) and the reference model (20) Gm(q−1)
for equation (27)
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ter H(q−1) and the reference signal weight
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R′(q−1)

=
rC(q−1){P (q−1)B(q−1) + ∆S(q−1)A(q−1)}

(1 + d1q−1 + d2q−2)C(q−1)V (q−1)
.

(28)

If the final value theorem applies to equation (28),
the steady state characteristic is derived from

R′(1) = P (1), (29)

which satisfies the restricted condition R′(1) =
P (1). Suppose that the rational function of the
reference signal weight R′(q−1) is expressed as

R′(q−1) =
Rn(q−1)
Rd(q−1)

. (30)

Then, the generalized output (5) is rewritten as

h(k + j)

= P (q−1)y(k + j) − Rn(q−1)
Rd(q−1)

w(k + j)

+ S(q−1)∆u(k). (31)

Multiply both sides of equation (31) with Rd(q−1),
it provides

h′(k + j)

= Rd(q−1)P (q−1)y(k + j) − Rn(q−1)w(k + j)

+ Rd(q−1)S(q−1)∆u(k), (32)

where y(k + j) is predicted with the Diophantine
equation (9). Minimizing the generalized output
(32) provides

u(k) = {Rn(q−1)C(q−1)w(k + j)



− Rd(q−1)F (q−1)y(k)}
× [∆Rd(q−1){B(q−1)E(q−1)

+ C(q−1)S(q−1)}]−1. (33)

Arrange equation (33) with Rd(q−1)

u(k)

=
1
∆

R′(q−1)C(q−1)w(k + j) − F (q−1)y(k)
B(q−1)E(q−1) + C(q−1)S(q−1)

,

(34)

where the reference signal weight R′(q−1) repre-
sents the rational function. This argument con-
firms that the proposed GMVC (34) has the same
effect as two degree of freedom GMVC (14) with
the filter. In the GMVC with the rational function
R′(q−1), the offsets due to the reference signal
changing and the disturbance are

E[e(∞)] = lim
q→1

{w(k) − y(k)}
= lim

q→1
[[B(q−1){P (q−1) − R(q−1)}

+ ∆S(q−1)A(q−1)]T ′−1(q−1)]

= 0, (35)

yd(∞) = lim
q→1

[∆q−jB(q−1){B(q−1)E(q−1)

+ C(q−1)S(q−1)}{C(q−1)T (q−1)}−1]

= 0, (36)

which no offset remains even if changing the
reference signal and loading the disturbance. In
other words, the two degree of freedom servo
GMVC can be derived from the rational reference
signal weight.

5. CONCLUSION

Jurry criterion applied to the characteristic equa-
tion of the closed-loop systems to improve the
transient characteristic. This paper pointed out
that the overshoot remains cause of the restricted
structure of the original GMVC. We introduced
the two degree of freedom GMVC with the ref-
erence signal filter to remove the overshoot. Fur-
thermore, this paper transformed the filter into
the reference signal weight that is the rational
function. Both the two degree of freedom GMVC
strategies have the same response property. The
latter proposed GMVC with the rational function
is superior to the GMVC with the filter because
of the simple structure. The simulation confirmed
that the two degree of freedom GMVC satisfies
both the transient characteristic and the over-
shoot reduction.
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Åström, K.J., U. Borisson, L. Ljung and B. Wit-
tenmark (1977). Theory and applications of
self-tuning regulators. Automatica 13, 457–
476.

Clarke, D.W. and P.J. Gawthrop (1979). Self-
tuning control. IEE Proc. 126D, 633–640.

Heath, W.P. and P.E. Wellstead (1995). Self-
tuning prediction and control for two-
dimensional processes part 2: parameter es-
timation, set-point tracking and offset. Inter-
national Journal of Control 62, 239–62.

Mori, Y., H. Akimoto, Y. Nakauchi and M. Nyu-
dou (1995). A study for improving the re-
sponse property of generalized predict con-
trol. Society of System and Control Engi-
neers(in Japanese) 31, 2024–2026.

Palsson, O.P., H. Madsen, K. Sjling and H.T.
Soagard (1993). Predictive control for non-
stationaly systems. IFAC World Congress
12, 17–20.

Palsson, O.P., H. Madsen, K. Sjling and H.T.
Soagard (1994). Predictive control for non-
stationaly systems. Automatica 30, 1991–
1997.

Shigemasa, T., Y. Takagi, Y. Ichikawa and T. Ki-
tamori (1983). A practical reference model for
control system design. Society of System and
Control Engineers(in Japanese) 19, 592–594.

Takahashi, K., Y. Nakauchi and Y. Mori (1998a).
2 degree of freedom generalized minimum
variance control. Society of System and Con-
trol Engineers(in Japanese) 34, 510–515.

Takahashi, K., Y. Nakauchi and Y. Mori (1998b).
A study of methods to remove offset for gen-
eralized minimum variance control. Society of
System and Control Engineers(in Japanese)
34, 120–124.

Tuffs, P.S. and D.W. Clarke (1985). Self-tuning
control of offset. IEE Proc. 132D, 100–110.

Wellstead, P.E. and M.B. Zarrop (1991). Self-
Tuning Systems. John Wiley & Sons Ltd..
New Jersey.

Yamamoto, T., K. Ishihara, S. Omatu and T. Ki-
tamori (1992). A construction of multivari-
able self tuning controller eith two degree of
freedom pid structure for discrete time sys-
tem. Society of System and Control Engi-
neers(in Japanese) 28, 484–491.


