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Abstract: Optimisation of fed-batch processes can be described as a constrained non-
linear end-point dynamic optimisation problem. Although iterative dynamic programming
(IDP) is feasible, it is usually very time-consuming and very difficult to apply to on-line
optimisation because of solving the non-linear differential-algebraic equations of the
process model in each iteration. The replacement of a rigorous mechanistic model by an
equivalent neural network (NN) model takes the advantage of high speed processing,
since simulation with a NN model involves only a few non-iterative algebraic
calculations. To use IDP algorithm for NN model based on-line re-optimisation, a
modified algorithm is proposed and is called as iterative dynamic programming for
discrete-time system (IDP/DTS). The novel IDP/DTS algorithm can obtain a reduction of
many times in computational time compared to the conventional IDP algorithm. In this
paper, an effective optimisation and control scheme for on-line re-optimisation of fed-
batch processes is proposed based on NN models and the novel IDP/DTS algorithm. The
proposed scheme is illustrated using simulation studies of an ethanol fermentation
process. Copyright © 2002 IFAC

Keywords:  neural networks, on-line re-optimisation, IDP, IDP/DTS algorithm, fed-batch
processes.

1. INTRODUCTION

In recent years, there has been a growing interest in
the use of optimisation in the control of fed-batch
processes. In fed-batch processes, our interests are
concerned with determining the feed rate to the
reactor that will give the maximum amount of the
desired product. Although only a single control
variable in the form of the feed rate may appear to
represent a simple optimal control problem,
considerable difficulties have been reported in the
determination of the optimal feeding policies for fed-
batch processes, because fed-batch processes, in
general, are non-linear dynamic systems. It is always
very difficult to obtain rigorous mechanistic models
due to the complexity of the processes, and also

difficult to implement them for on-line optimisation
and control.

When building first principles models is very costly
and difficult, empirical models based on process
input-output data can provide the useful alternative.
Neural networks (NN) have been proposed as a
promising tool for identifying empirical models
(Bhat and McAvoy, 1990) and have been shown to
be capable of approximating any continuous non-
linear functions (Sjoberg et al, 1995). If properly
trained and validated, these neural network models
can be used to accurately predict steady-state and
dynamic process behaviour, hence, leading to
improved process optimisation and control
performance (Narendra and Parthasarathy, 1990;
Sjoberg et al, 1995; Zhang and Morris, 1999).
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Furthermore, the most important aspects to be
considered in a fed-batch process are the changes in
process parameters and/or dynamics during the
operation of the batch. Once the dynamic of a
process is altered, the off-line calculated optimal
control profile will be no longer optimal. There is a
need to re-optimise the process on-line using new
process dynamics (Tian et al., 2001).

Optimisation of fed-batch processes is usually a
constrained non-linear dynamic optimisation
problem. Direct search methods could be feasible for
this kind of optimisation problem. They are also
reliable and the possibility of obtaining the global
optimum is very high, although most of the direct
search methods are very time-consuming because
they usually require a large number of iterations.
Many direct search methods have been reported, such
as iterative dynamic programming (IDP) (Luus,
1990, 1992, 1993), heuristic random optimisation (Li
and Rhinehart, 1998), and direct detailed grid search
method (Nascimento et al, 2000).

IDP, as developed by Luus (1990), offers a good
alternative for obtaining the global optimum. IDP has
the advantage of not requiring additional variables to
be introduced, and therefore the method does not
encounter those problems as singular control. Bojkov
and Luus (1996) have shown that penalty functions
are very effective in handling final state constrained
problems solved by IDP when an appropriate penalty
function factor is selected. IDP has also been found
to be well suited for an extractive fermentation
optimisation problem and for general constrained
optimal control problems by Dadebo and McAuley
(1995). However, IDP is computationally time-
consuming because of solving the non-linear
differential-algebraic equations (DAEs) of process
models in each iteration. The CPU time required for
the whole iterations was approximately 2 hours in a
typical batch process (Bojkov and Luus, 1996). It is
very difficult to use IDP for on-line optimisation and
control.

For on-line optimisation purposes, it is strongly
desirable that the model can be simulated in short
time while capable of describing the system
accurately. In this sense, a properly trained NN
model is a good substitute for a rigorous mechanistic
model. High speed processing is obtained because
simulation with a NN model involves only a few
non-iterative algebraic calculations. IDP methods (by
Luus, 1990) have been proposed only for the rigorous
process models in the form of differential equations,
discrete time models, such as NN models, have not
been involved. Re-optimisation using IDP has not
been reported either. Although some mismatches
between a NN model and the real process may exist,
on-line re-optimisation will overcome this
disadvantage by tracking the process dynamic
behaviour in real time. The aim of this paper is to
present a simple and effective optimisation and
control scheme for on-line re-optimisation of fed-

batch processes based on neural network models,
making possible to proceed the re-optimisation by
IDP/DTS. In this study, the scheme mainly focuses
on the model-plant mismatches of a neural network
model, but it is also suitable for different initial
conditions of batch processes, such as those caused
by reactive impurities (Tian et al., 2001).

The rest of this paper is structured as follows: Section
2 describes on-line optimisation based on neural
network. In Section 3, the IDP/DTS optimisation
algorithm is studied and developed based on NN
model, then the whole scheme of on-line re-
optimisation is proposed in detail. The proposed
scheme is illustrated on a simulation of a fed-batch
fermentation plant in Section 4. Finally Section 5
draws some concluding remarks.

2. NEURAL NETWORK BASED ON-LINE
OPTIMISATION CONTROL

Many fed-batch processes can be considered as a
class of control-affine non-linear systems described
as follows

x& =f(x)+g(x)u,     x(0)=x0                      (1)

where x ∈ Rp, u ∈ Rq, ƒ and g are p-dimensional
analytic vector fields. In fed-batch processes, the
maximum amount of the desired product is
concerned by determining feed rate to the reactor.
This leads to an endpoint optimal control problem of
a non-linear system, which can be mathematically
formulated as
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where tf  is the final time of a batch and it is given.

The optimisation problem of the discrete-time system
may be described as
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where y is discrete variable of x in equation (1), h is
the sampling interval, H is constraint function, time
k=0 defines the start of a batch and k=N defines the
end of a batch.

Neural networks have been claimed as a universal
non-linear approximator (Sjoberg et al., 1995) and
their applications to model based control in the field
of chemical engineering are growing fast (Bhat and
McAvoy, 1990; Nascimento et al., 2000). Because a
properly trained and validated NN model can
accurately predict long-range dynamic behaviour of
the process, the optimisation and control profile can
be calculated off-line based on a NN model. The
straightforward optimisation approach is to



implement a NN model within a conventional
optimisation method. This approach has been used by
Altissimi et al. (1998) to optimise the profit a
hydrocraking reactor using sequential quadratic
programming (SQP). They replaced a first-principle
model with a NN and obtained a reduction of at least
60 times in computational time. Nascimento et al.
(2000) presented a study of NN based optimisation of
a polymerisation process in a twin-screw extruder
reactor. They used a NN model to carry out a detailed
grid search in the region of interest. The use of a NN
model takes advantage of the comparative rapidity of
the NN model based simulation. In this paper, we use
a NN model to replace a rigorous mechanistic model
in the IDP scheme, and propose a modified IDP
algorithm for discrete-time system, which is called as
IDP/DTS. High speed processing of IDP/DTS makes
it possible to be used in an on-line re-optimisation
procedure for batch processes.

Using a neural network to model the fed-batch
process given by Eq(1), the control-affine non-linear
system can be described in discrete-time function as

 y(k+1) = fNN (y(k),…,y(k-n+1), u(k))             (6)

Here Feedforward Neural Network (FNN) is selected
to approximate the non-linear relationship between
input and output of a fed-batch process. Using a
properly trained and validated FNN model, long-
range dynamic behaviour of a process can be
predicted accurately (Zhang, 2001).

To reduce the complexity of the optimisation
problem, the set of possible control trajectories is
restricted to a finite-dimensional space. The control
input is here parameterised as a piecewise constant
function.

3. IDP FOR DISCRETE-TIME SYSTEM (IDP/DTS)
OPTIMISATION ALGORITHM

The IDP algorithm developed by Luus (1990) has
been reported only involving the continuous-time
rigorous mechanistic models or first-principle
models. As to discrete-time model, such as NN
model, there are some steps that should be modified
if IDP algorithm is to be used.  Firstly, the method of
constructing grid-points is to be revised. In IDP, for a
rigorous model, the vector of state-space variables
χ(t) = (x1(t),…,xn(t)), where n is the order of
continuous-time system, is the basement of grid-
points. But for a discrete-time system, the model is
described as

y(k+1) = f (y(k),…,y(k-ny+1), u(k),…,u(k-nu+1))     (7)

where nu and ny are the maximum lags in the input
and output respectively, known as the orders of the
discrete-time system, and subject to (ny+nu) ≥ n. Then
the basement of grid points is changed into

χ(k)= (y(k),…,y(k-ny+1), u(k),…,u(k-nu+1))          (8)

Secondly, replace a NN model for the rigorous
mechanistic model at each time stage and at each
iteration. It only involves a few algebraic
calculations, not to solve non-linear DAEs of process
model, thus the time cost decreases significantly. It
benefits to construct on-line re-optimisation using
this kind of modified IDP algorithm. Thirdly, when
used in an on-line re-optimisation procedure, time
stage P decreases gradually. Finally, neural network
should be built using input/output data set, in order to
predict output of the process in IDP/DTS procedure.

The IDP/DTS procedure can be outlined in the
following algorithm:
(1) Divide the time interval of a batch [0, tf] into P

time stage and each of length L, guess the initial
values of control policy u0, and set index j to 0.

(2) Choose the number of χ-grid points Q at each
time stage and the number of allowable values M
for the control u. If the constraints are existed in
the non-linear optimisation problem and are
violated for the components of these M
allowable values, the clipping technique is used
to substitute the constraints for the values.
Choose also the initial region r(0), over which
the allowable values for control can be selected.

(3) Choose Q nominal initial allowable values of
control, where Q is odd, and subsequently
perturbing u0(i) uniformly for each time stage
inside the allowable region for control to
generate Q control trajectories u(k,i)
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where i=1,2,…,P, and j is the iteration index.
Using the Q control trajectories, based on the
NN model, predict recursively Q times to
generate and store the χ-grid for each time stage.

(4) Starting at the last time stage P, corresponding to
time tf -L, for each χ-grid point, predict based on
NN model from tf -L to tf once with each of the
M allowable values for control. Choose the value
of control u that minimises the performance
index and store the corresponding value of
control for use in step (5).

(5) Step back to stage P-1, corresponding to time tf -
2L, and predict based on NN model from tf -2L
to tf -L for each χ-grid point once with each of
the M allowable values for control. To continue
to predict based on NN model from tf -L to tf,
choose the control from step (4) that corresponds
to the grid point closest to the resulting χ at tf -L.
Compare the M values of the performance index
and store the value of control that gives the
minimum value.

(6) Repeat this procedure for stage P-2, P-3, etc.,
until stage 1, corresponding to the initial time
t=0, is reached. Store the control policy that
minimises the performance index.



(7) Reduce the region for the allowable values of
control by a factor α, i.e., r(j+1) = α r(j), where j
is the iteration index, and α=0.7 here. Use the
optimal control policy obtained in step (6) as the
nominal value for u0.

(8) Increase the iteration index, j, by 1. If j < T (e.g.
T = 20), go to step (3); else record both the
values of performance index and the best control
policy at each iteration, and stop.

4. OPTIMAL CONTROL OF A FED-BATCH
FERMENTATION PROCESS

The fed-batch fermentation process was taken from
Hong (1986) and Luss (1993). The mechanistic
model of the fed-batch ethanol fermentation process
is described as follows
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where x1 is the cell mass concentration, x2 is the
substrate concentration, x3 is the product
concentration, x4 is the liquid volume of the reactor.
The initial condition is specified as x(0) = [1 150 0
10]T, with the feed rate to the reactor u constrained
by 0≤ u ≤12, the liquid volume of the reactor is
limited by the 200l vessel size, and tf is set to 63.0 h.

The performance index is the yield of the reactor,
which is to be maximised by choosing the feed rate u
at the end of a batch

)()()(min 43)( fftu
txtxuJ −=           (16)

In this study, we assume that the above mechanistic
model, Eq(10~15) is not available, thus an empirical
model has to be utilised. Because the performance
index only include variables x3 and x4, we use a FNN
to model the non-linear relationship between x3 and
u. And x4 is the liquid volume of the reactor, then
x4(tf) can be integrated by u easily. Thus the whole
discrete-time model of fed-batch process is described

 yp(k+1) = fNN  (yp(k),yp(k-1),yp(k-2), u(k))              (17)
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where yp=x3, V=x4, yp(0)=0,V(0)=10, N=10, h is
interval time.

Several batches of the process operation under
different feeding policies are simulated from the
mechanistic model to produce the data set for FNN
modelling. The appropriate topology and weights of
FNN model is determined by examining the least
SSE on testing data. FNN is trained using the
Levenberg-Marquardt algorithm with regularisation
and using an “early stopping” mechanism to prevent
over-fitting. After FNN training, predictions of yp

from a typical batch run is shown in Figure 1. It can
be seen that these predictions are quite accurate.
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Fig. 1. Predictions at a typical batch run of NN model
compared to real model

According to the discrete-time model, this
optimisation problem is a final state constrained non-
linear dynamic optimisation. Using the penalty
function technique (Bojkov and Luus, 1996), and
taking into account the final state inequality
constraint, the optimisation problem with the
augmented performance index is chosen in the form
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where λ is the penalty function factor and is set to
1000 here.

To investigate the convergence of performance index
for this problem and compare all three cases, listed in
Tabel 1, the results of off-line optimal control profile
and actural output of process are obtained by using
IDP algorithm based on the mechanistic model, i. e.,

Table 1 Three cases list

Case 1:  off-line optimisation,    IDP,   rigorous model
Case 2:  off-line optimisation,     IDP/DTS,  NN model
Case 3:  on-line re-optimisation, IDP/DTS,  NN model
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DAEs model Eq(10~15). All the calculations were
carried out using MATLAB5.2 running on a Pentium
800 Personal Computer. The MATLAB command
ODE45 was used for integration of the differential
equations in the mechanistic model.

We choose the following parameters: time stage
N=10, a reduction factor α=0.7, initial control policy
u0 =4.0, and an initial control region size r(0)=5.0,
which are the same as those used in Luus (1993).
Detailed results showing the effects of the numbers
of grid points Q, allowable control values M, and
iterations T, are given in Table 2. In Case 1, when
values of Q, M, T are increased, the convergence
properties of iteration calculation are increased
correspondingly and better values of performance
index are obtained, but CPU time also raises
significantly. When Q is 81 and M is 17, it is too
much time-consuming, about 5.5 hours, to be applied
to on-line optimisation. In Case 2 and Case 3, the
performance of optimisation are also better and time-
cost has not been the problems when parameters are
increased. To compare performance of all methods in
detail, the suitable parameters, Q=41, M=7, T=20, are
chosen. In Case 1, the performance index value is
20706, which is close to the result reported by Luus
(1993), but it costs 142 minutes CPU time because it
has to solve those differential equations at each
iteration. It is therefore very difficult to be used on-
line. On the other hand, in Case 2, using IDP/DTS
based on NN model, the off-line optimisation only
takes 7 minutes CPU time, almost 20 times reduction
compared to Case 1. Although the result of off-line
optimisation in Case 2, 16680, is not as good as that
in Case 1, on-line re-optimisation can overcome this
disadvantage. In Case 3, the control profiles gained
in Case 2 are chosen to be the initial trajectories to
search optimum by IDP/DTS. The result is improved
further as shown in Table 2, 20134, close to the result
of Case 1, and it only takes 28 minutes CPU time to
complete all on-line re-optimisation procedure,
almost decreases 5 times compared to Case 1. The
piecewise constant optimal control policies of all
three cases are shown in Figure 2.

The corresponding outputs V(k) under these optimal
control polices are shown in Figure 3. The final
volumes V(N) in all cases are exactly 200 l. It means
that the final state constraints are satisfied by using
the penalty function technique.

It is interesting to note the end time stage where the
feed rate u(N-1) is zero when volume V(N) reach the
constraints. Figures 4 and 5 compare the actual and
predicted values of output y(k) based on NN model in
Cases 2 and 3, and they are both compared to the
results of Case 1, where “o” stands for y(N) at the
end of batch in Case 1, and “x” and “∇” stand for
actual output y(N) and NN model prediction yNN(N) at
the end of batch in Cases 2 and 3 respectively. In
spite of the poor results in Case 2, the results
obtained in Case 3 are gradually improved under the
on-line re-optimisation scheme. This demonstrates
that the on-line re-optimisation procedure is very
beneficial.
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Fig. 2. Piecewise constant optimal control policies of
all cases
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Fig. 3. Corresponding output V(k) under optimal
control profiles in all cases
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Table 2 Performance comparison of different parameters

Performance Index CPU time(min)
Case 1       Case 2       Case 3  Case 1       Case 2     Case 3

Q=41, M=5,   T=20 20601 15947 18668 143.34 4.54 18.09
Q=35, M=5,   T=20 20622 17460 19859 111.69 4.90 19.96
Q=41, M=7,   T=10 20574 16408 19807 76.29 3.18 13.53
Q=41, M=7,   T=20 20706 16680 20134 142.38 7.25 28.12
Q=81, M=17, T=20 20721 16806 20175 326.74 7.49 32.24
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Fig. 4. Actual and predicted values of output y(k) in
Case 2 compared to Case 1
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Fig. 5. Actual and predicted values of output y(k) in
Case 3 compared to Case 1

5. CONCLUSIONS

IDP algorithm using penalty function provides an
effective way of solving a rather difficult
optimisation problem of non-linear control-affine
fed-batch process. However, IDP with mechanistic
models is usually very time-consuming due to
integrating differential equations. NN models can
take the advantage of high speed proceeding and are
very useful in on-line re-optimisation. A novel
IDP/DTS algorithm is proposed to utilise a NN
model in stead of a mechanistic model of a process in
IDP. An effective on-line re-optimisation scheme
based on NN model using IDP/DTS is also presented.
All are demonstrated in a benchmark fed-batch
process. It has been shown that using off-line
optimisation with IDP/DTS, almost 20 times CPU
time are reduced compared to using IDP based on the
rigorous mechanistic model and on-line re-
optimisation procedure reduces computation time by
almost 5 times. In spite of poor results in off-line
optimisation using IDP/DTS, the performance index
is improved by using on-line re-optimisation.
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